Spectral and instantaneous flow field characteristics of the laminar to turbulent transition in a cone and plate apparatus

Spectral and instantaneous flow field characteristics of the laminar to turbulent transition in a... Fluid-surface interaction, is very much influenced by the flow distribution and the flow spectra. For biological surfaces, cell functions such as mytosis and cell turnover, can be triggered by the instantaneous flow fluctuations which induce augmented shear stress levels inside the wall surface boundary layer. The objective of this work is to study the flow field along a cellular surface and to understand the interaction process. For that purpose, a cone and plate apparatus was built in which the transitional and turbulent instantaneous flow field characteristics, especially near the plate surface, were investigated using spatial hot wire anemometry, concentrating on time domain and spectral analysis. The frequency spectrum of velocity fluctuations near the plate is influenced by the plate roughness. We found that there is a linear relation between wall roughness and the preferred frequencies of the spectra. In addition a universal law exists for mean velocities, similar to the logarithmic law of the wall, when normalized by R˜ 1/2, the apparatus Reynolds number. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Spectral and instantaneous flow field characteristics of the laminar to turbulent transition in a cone and plate apparatus

Loading next page...
 
/lp/springer_journal/spectral-and-instantaneous-flow-field-characteristics-of-the-laminar-sDg0wAc22G
Publisher
Springer-Verlag
Copyright
Copyright © 2000 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s003480050392
Publisher site
See Article on Publisher Site

Abstract

Fluid-surface interaction, is very much influenced by the flow distribution and the flow spectra. For biological surfaces, cell functions such as mytosis and cell turnover, can be triggered by the instantaneous flow fluctuations which induce augmented shear stress levels inside the wall surface boundary layer. The objective of this work is to study the flow field along a cellular surface and to understand the interaction process. For that purpose, a cone and plate apparatus was built in which the transitional and turbulent instantaneous flow field characteristics, especially near the plate surface, were investigated using spatial hot wire anemometry, concentrating on time domain and spectral analysis. The frequency spectrum of velocity fluctuations near the plate is influenced by the plate roughness. We found that there is a linear relation between wall roughness and the preferred frequencies of the spectra. In addition a universal law exists for mean velocities, similar to the logarithmic law of the wall, when normalized by R˜ 1/2, the apparatus Reynolds number.

Journal

Experiments in FluidsSpringer Journals

Published: Apr 3, 2000

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off