Specificity of auxin regulation of gibberellin 20-oxidase gene expression in pea pericarp

Specificity of auxin regulation of gibberellin 20-oxidase gene expression in pea pericarp During early pea fruit growth, the physiological roles of 4-chloroindole-3-acetic acid (4-Cl-IAA) and IAA, natural pea auxins, in regulating gibberellin (GA) 20-oxidase gene expression (PsGA20ox1) were tested with 4-position, ring-substituted auxins that have a range of biological activities (fruit growth). The effect of seeds, and natural and synthetic auxins (4-Cl-IAA, and IAA; 4-Me-IAA, 4-Et-IAA and 4-F-IAA, respectively), and auxin concentration (4-Cl-IAA) on PsGA20ox1 mRNA levels in pea pericarp were investigated over a 24 h treatment period. The ability of the 4-substituted auxins to increase PsGA20ox1 mRNA levels in deseeded pericarp was correlated with their ability to stimulate pericarp growth. The greatest increase in pericarp PsGA20ox1 mRNA levels and growth was observed when deseeded pericarps were treated with the naturally occurring pea auxin, 4-Cl-IAA; however, IAA was not effective. Silver thiosulfate, an ethylene action antagonist, did not reverse IAA's lack of stimulation of PsGA20ox1 over the control treatment. 4-Me-IAA was the second most active auxin in stimulating PsGA20ox1 and was the second most biologically active auxin. Application of the 4-substituted IAA analogs, 4-Et-IAA and 4-F-IAA, to deseeded pericarps resulted in minimal or no increase in PsGA20ox1 transcript levels or pericarp growth. Pericarp PsGA20ox1 mRNA levels increased with increasing 4-Cl-IAA concentration and showed transitory increases at low 4-Cl-IAA treatments (30 to 300 pmol). These results support a unique physiological role for the auxin 4-Cl-IAA in the regulation of GA metabolism by effecting PsGA20ox1 expression during early pea fruit growth. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Specificity of auxin regulation of gibberellin 20-oxidase gene expression in pea pericarp

Loading next page...
 
/lp/springer_journal/specificity-of-auxin-regulation-of-gibberellin-20-oxidase-gene-c07EVzOrtu
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2002 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1015522404586
Publisher site
See Article on Publisher Site

Abstract

During early pea fruit growth, the physiological roles of 4-chloroindole-3-acetic acid (4-Cl-IAA) and IAA, natural pea auxins, in regulating gibberellin (GA) 20-oxidase gene expression (PsGA20ox1) were tested with 4-position, ring-substituted auxins that have a range of biological activities (fruit growth). The effect of seeds, and natural and synthetic auxins (4-Cl-IAA, and IAA; 4-Me-IAA, 4-Et-IAA and 4-F-IAA, respectively), and auxin concentration (4-Cl-IAA) on PsGA20ox1 mRNA levels in pea pericarp were investigated over a 24 h treatment period. The ability of the 4-substituted auxins to increase PsGA20ox1 mRNA levels in deseeded pericarp was correlated with their ability to stimulate pericarp growth. The greatest increase in pericarp PsGA20ox1 mRNA levels and growth was observed when deseeded pericarps were treated with the naturally occurring pea auxin, 4-Cl-IAA; however, IAA was not effective. Silver thiosulfate, an ethylene action antagonist, did not reverse IAA's lack of stimulation of PsGA20ox1 over the control treatment. 4-Me-IAA was the second most active auxin in stimulating PsGA20ox1 and was the second most biologically active auxin. Application of the 4-substituted IAA analogs, 4-Et-IAA and 4-F-IAA, to deseeded pericarps resulted in minimal or no increase in PsGA20ox1 transcript levels or pericarp growth. Pericarp PsGA20ox1 mRNA levels increased with increasing 4-Cl-IAA concentration and showed transitory increases at low 4-Cl-IAA treatments (30 to 300 pmol). These results support a unique physiological role for the auxin 4-Cl-IAA in the regulation of GA metabolism by effecting PsGA20ox1 expression during early pea fruit growth.

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 13, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off