Specification of random effects in multilevel models: a review

Specification of random effects in multilevel models: a review The analysis of highly structured data requires models with unobserved components (random effects) able to adequately account for the patterns of variances and correlations. The specification of the unobserved components is a key and challenging task. In this paper, we first review the literature about the consequences of misspecifying the distribution of the random effects and the related diagnostic tools; we then outline the main alternatives and generalizations, also considering some issues arising in Bayesian inference. The relevance of suitably structuring the unobserved components is illustrated by means of an application exploiting a model with heteroscedastic random effects. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quality & Quantity Springer Journals

Specification of random effects in multilevel models: a review

Loading next page...
 
/lp/springer_journal/specification-of-random-effects-in-multilevel-models-a-review-wBE06ii7cm
Publisher
Springer Netherlands
Copyright
Copyright © 2014 by Springer Science+Business Media Dordrecht
Subject
Social Sciences, general; Methodology of the Social Sciences; Social Sciences, general
ISSN
0033-5177
eISSN
1573-7845
D.O.I.
10.1007/s11135-014-0060-5
Publisher site
See Article on Publisher Site

Abstract

The analysis of highly structured data requires models with unobserved components (random effects) able to adequately account for the patterns of variances and correlations. The specification of the unobserved components is a key and challenging task. In this paper, we first review the literature about the consequences of misspecifying the distribution of the random effects and the related diagnostic tools; we then outline the main alternatives and generalizations, also considering some issues arising in Bayesian inference. The relevance of suitably structuring the unobserved components is illustrated by means of an application exploiting a model with heteroscedastic random effects.

Journal

Quality & QuantitySpringer Journals

Published: Jul 29, 2014

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off