Specific patterns of changes in wheat gene expression after treatment with three antifungal compounds

Specific patterns of changes in wheat gene expression after treatment with three antifungal... The two fungicides azoxystrobin and fenpropimorph are used against powdery mildew and rust diseases in wheat (Triticum aestivumL). Azoxystrobin, a strobilurin, inhibits fungal mitochondrial respiration and fenpropimorph, a morpholin, represses biosynthesis of ergosterol, the major sterol of fungal membranes. Although the fungitoxic activity of these compounds is well understood, their effects on plant metabolism remain unclear. In contrast to the fungicides which directly affect pathogen metabolism, benzo(1,2,3) thiadiazole-7-carbothioic acid S-methylester (BTH) induces resistance against wheat pathogens by the activation of systemic acquired resistance in the host plant. In this study, we monitored gene expression in spring wheat after treatment with each of these agrochemicals in a greenhouse trial using a microarray containing 600 barley cDNA clones. Defence-related genes were strongly induced after treatment with BTH, confirming the activation of a similar set of genes as in dicot plants following salicylic acid treatment. A similar gene expression pattern was observed after treatment with fenpropimorph and some defence-related genes were induced by azoxystrobin, demonstrating that these fungicides also activate a defence reaction. However, less intense responses were triggered than with BTH. The same experiments performed under field conditions gave dramatically different results. No gene showed differential expression after treatment and defence genes were already expressed at a high level before application of the agrochemicals. These differences in the expression patterns between the two environments demonstrate the importance of plant growth conditions for testing the impact of agrochemicals on plant metabolism. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Specific patterns of changes in wheat gene expression after treatment with three antifungal compounds

Loading next page...
 
/lp/springer_journal/specific-patterns-of-changes-in-wheat-gene-expression-after-treatment-CxYLae5hyr
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2005 by Springer
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-005-1728-y
Publisher site
See Article on Publisher Site

Abstract

The two fungicides azoxystrobin and fenpropimorph are used against powdery mildew and rust diseases in wheat (Triticum aestivumL). Azoxystrobin, a strobilurin, inhibits fungal mitochondrial respiration and fenpropimorph, a morpholin, represses biosynthesis of ergosterol, the major sterol of fungal membranes. Although the fungitoxic activity of these compounds is well understood, their effects on plant metabolism remain unclear. In contrast to the fungicides which directly affect pathogen metabolism, benzo(1,2,3) thiadiazole-7-carbothioic acid S-methylester (BTH) induces resistance against wheat pathogens by the activation of systemic acquired resistance in the host plant. In this study, we monitored gene expression in spring wheat after treatment with each of these agrochemicals in a greenhouse trial using a microarray containing 600 barley cDNA clones. Defence-related genes were strongly induced after treatment with BTH, confirming the activation of a similar set of genes as in dicot plants following salicylic acid treatment. A similar gene expression pattern was observed after treatment with fenpropimorph and some defence-related genes were induced by azoxystrobin, demonstrating that these fungicides also activate a defence reaction. However, less intense responses were triggered than with BTH. The same experiments performed under field conditions gave dramatically different results. No gene showed differential expression after treatment and defence genes were already expressed at a high level before application of the agrochemicals. These differences in the expression patterns between the two environments demonstrate the importance of plant growth conditions for testing the impact of agrochemicals on plant metabolism.

Journal

Plant Molecular BiologySpringer Journals

Published: Feb 3, 2005

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off