Specific induction of TaAAPT1, an ER- and Golgi-localized ECPT-type aminoalcoholphosphotransferase, results in preferential accumulation of the phosphatidylethanolamine membrane phospholipid during cold acclimation in wheat

Specific induction of TaAAPT1, an ER- and Golgi-localized ECPT-type... Cold acclimation requires substantial alteration in membrane property. In contrast to well-documented fatty acid unsaturation during cold acclimation, changes in phospholipid biosynthesis during cold acclimation are less understood. Here, we isolated and characterized two aminoalcoholphosphotransferase (AAPT) cDNAs, TaAAPT1 and TaAAPT2, from wheat. AAPTs utilize diacylglycerols and CDP-choline/ethanolamine as substrates and catalyze the final step of the CDP-choline/ethanolamine pathway for phosphatidylcholine (PC)/phosphatidylethanolamine (PE) synthesis, respectively. Functionality of TaAAPT1 and TaAAPT2 was demonstrated by heterologous expression in a yeast cpt1Δ ept1Δ double mutant that lacks both AAPT activities. Detailed characterization of AAPT activities from the transformed mutant cells indicated that TaAAPT1 is an ECPT-type enzyme with higher ethanolamine phosphotransferase (EPT) activity than choline phosphotransferase (CPT) activity, while TaAAPT2 is a CEPT-type with the opposite substrate preference. Transient expression of GFP-fused TaAAPT1 and TaAAPT2 proteins in wheat and onion cells indicated they are localized to both the endoplasmic reticulum and Golgi apparatus, suggesting that the final synthesis of PE and PC via the CDP-choline/ethanolamine pathway occurs in these organella. Quantitative PCR analyses revealed that TaAAPT1 expression is strongly induced by cold, while TaAAPT2 was constitutively expressed at lower levels. Measurement of phospholipid content in wheat leaves indicated that PE is more prominently increased in response to cold than PC and accordingly PE/PC ratio increased from 0.385 to 0.530 during 14 days of cold acclimation. Together, these data suggested that an increase in the PE/PC ratio during cold acclimation is regulated at the final step of the biosynthetic pathway. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Specific induction of TaAAPT1, an ER- and Golgi-localized ECPT-type aminoalcoholphosphotransferase, results in preferential accumulation of the phosphatidylethanolamine membrane phospholipid during cold acclimation in wheat

Loading next page...
 
/lp/springer_journal/specific-induction-of-taaapt1-an-er-and-golgi-localized-ecpt-type-kXce5ii3sF
Publisher
Springer Netherlands
Copyright
Copyright © 2009 by Springer Science+Business Media B.V.
Subject
Life Sciences; Plant Pathology; Biochemistry, general; Plant Sciences
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-009-9588-5
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial