Specific Features of Plastid Pigment Apparatus and Photosynthesis in the Leaves of Ephemeroid and Summer Plants as Related to Photoinhibition

Specific Features of Plastid Pigment Apparatus and Photosynthesis in the Leaves of Ephemeroid and... The state of the pigment apparatus and potential photosynthesis (PP) was compared in the leaves of plants falling into two ecological groups, ephemeroids (three species) and summer plants (two species). For the first time, the organization of the plastid pigment apparatus was investigated in ephemeroids using the data on chlorophyll and carotenoid distribution between the major photosynthetic pools. The molar ratio between xanthophylls and chlorophyll in the light-harvesting complex of plastids in the ephemeroids (0.5 to 0.6) considerably exceeded that in the summer plants (0.3–0.4). By using salicylaldoxime, an inhibitor of the reverse reaction of the violaxanthin cycle, we were able to calculate the active pool of violaxanthin on its way to zeaxanthin. This pool was shown to amount to 85% of the sum total of xanthophylls of the violaxanthin cycle in the ephemeroid leaf plastids as compared to 60% in the summer species. Thus, potentially, the photosynthetic apparatus in the ephemeroid leaves is better provided with the pigments essential for photoprotective function and for maintaining a high photosynthetic rate under early spring conditions. Under chilling temperatures of 5–10°C and full insolation, PP in ephemeroids was as high as in the summer plants at 20°C. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Specific Features of Plastid Pigment Apparatus and Photosynthesis in the Leaves of Ephemeroid and Summer Plants as Related to Photoinhibition

Loading next page...
 
/lp/springer_journal/specific-features-of-plastid-pigment-apparatus-and-photosynthesis-in-KhLUCEIHVh
Publisher
Springer Journals
Copyright
Copyright © 2003 by MAIK “Nauka/Interperiodica”
Subject
Life Sciences; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1023/A:1021984301214
Publisher site
See Article on Publisher Site

Abstract

The state of the pigment apparatus and potential photosynthesis (PP) was compared in the leaves of plants falling into two ecological groups, ephemeroids (three species) and summer plants (two species). For the first time, the organization of the plastid pigment apparatus was investigated in ephemeroids using the data on chlorophyll and carotenoid distribution between the major photosynthetic pools. The molar ratio between xanthophylls and chlorophyll in the light-harvesting complex of plastids in the ephemeroids (0.5 to 0.6) considerably exceeded that in the summer plants (0.3–0.4). By using salicylaldoxime, an inhibitor of the reverse reaction of the violaxanthin cycle, we were able to calculate the active pool of violaxanthin on its way to zeaxanthin. This pool was shown to amount to 85% of the sum total of xanthophylls of the violaxanthin cycle in the ephemeroid leaf plastids as compared to 60% in the summer species. Thus, potentially, the photosynthetic apparatus in the ephemeroid leaves is better provided with the pigments essential for photoprotective function and for maintaining a high photosynthetic rate under early spring conditions. Under chilling temperatures of 5–10°C and full insolation, PP in ephemeroids was as high as in the summer plants at 20°C.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Oct 17, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off