Species-specific allometric equations for improving aboveground biomass estimates of dry deciduous woodland ecosystems

Species-specific allometric equations for improving aboveground biomass estimates of dry... Allometric equations are important for quantifying biomass and carbon storage in terrestrial forest ecosystems. However, equations for dry deciduous woodland ecosystems, an important carbon sink in the lowland areas of Ethiopia have not as yet been developed. This study attempts to develop and evaluate species-specific allometric equations for predicting aboveground biomass (AGB) of dominant woody species based on data from destructive sampling for Combretum collinum, Combretum molle, Combretum harotomannianum, Terminalia laxiflora and mixed-species. Diameter at breast height ranged from 5 to 30 cm. Two empirical equations were developed using DBH (Eq. 1) and height (Eq. 2). Equation 2 gave better AGB estimations than Eq. 1. The inclusion of both DBH and H were the best estimate biometric variables for AGB. Further, the equations were evaluated and compared with common generic allometric equations. The result showed that our allometric equations are appropriate for estimating AGB. The development and application of empirical species-specific allometric equations is crucial to improve biomass and carbon stock estimation for dry woodland ecosystems. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Forestry Research Springer Journals

Species-specific allometric equations for improving aboveground biomass estimates of dry deciduous woodland ecosystems

Loading next page...
 
/lp/springer_journal/species-specific-allometric-equations-for-improving-aboveground-S6ozzdYm9F
Publisher
Springer Journals
Copyright
Copyright © 2018 by Northeast Forestry University and Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Life Sciences; Forestry
ISSN
1007-662X
eISSN
1993-0607
DOI
10.1007/s11676-018-0707-5
Publisher site
See Article on Publisher Site

Abstract

Allometric equations are important for quantifying biomass and carbon storage in terrestrial forest ecosystems. However, equations for dry deciduous woodland ecosystems, an important carbon sink in the lowland areas of Ethiopia have not as yet been developed. This study attempts to develop and evaluate species-specific allometric equations for predicting aboveground biomass (AGB) of dominant woody species based on data from destructive sampling for Combretum collinum, Combretum molle, Combretum harotomannianum, Terminalia laxiflora and mixed-species. Diameter at breast height ranged from 5 to 30 cm. Two empirical equations were developed using DBH (Eq. 1) and height (Eq. 2). Equation 2 gave better AGB estimations than Eq. 1. The inclusion of both DBH and H were the best estimate biometric variables for AGB. Further, the equations were evaluated and compared with common generic allometric equations. The result showed that our allometric equations are appropriate for estimating AGB. The development and application of empirical species-specific allometric equations is crucial to improve biomass and carbon stock estimation for dry woodland ecosystems.

Journal

Journal of Forestry ResearchSpringer Journals

Published: May 30, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off