Species pairs of north temperate freshwater fishes: Evolution, taxonomy, and conservation

Species pairs of north temperate freshwater fishes: Evolution, taxonomy, and conservation Many fish species contain morphologically, ecologically and geneticallydistinct populations that are sympatric during at least some portion oftheir life cycle. Such reproductively isolated populations act asdistinct biological species, but are identified by a common Latinbinomial. These ‘species pairs’ are particularly common in freshwaterfish families such as Salmonidae, Gasterosteidae and Osmeridae and aretypically associated with postglacial lakes in north temperateenvironments. The nature of the divergences between sympatric species,factors contributing to reproductive isolation, and modes of evolutionare reviewed with particular emphasis on benthic and limnetic pairs ofthreespine sticklebacks, Gasterosteus aculeatus, and anadromous(sockeye salmon) and nonanadromous (kokanee) pairs of Oncorhynchusnerka. Phylogenetic analyses typically indicate that divergencesbetween members of replicate pairs have occurred independently and,hence, particular phenotypes are not monophyletic. Consequently,taxonomic resolution of such ‘species complexes’ is a vexing problem foradherents to our traditional Linnaean classification system. Sympatricspecies pairs represent a significant component of the biodiversity oftemperate freshwater ecosystems which may be underestimated because oursystem of formal taxonomy tends to obscure diversity encompassed byspecies pairs. Conservation of such systems should be recognized as apriority without formal taxonomic designation of members of speciespairs because taxonomic resolution will likely continue to proveextremely difficult when employing traditional hierarchies andprocedures. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Reviews in Fish Biology and Fisheries Springer Journals

Species pairs of north temperate freshwater fishes: Evolution, taxonomy, and conservation

Loading next page...
 
/lp/springer_journal/species-pairs-of-north-temperate-freshwater-fishes-evolution-taxonomy-9AhJrMFEPx
Publisher
Springer Journals
Copyright
Copyright © 1999 by Kluwer Academic Publishers
Subject
Life Sciences; Freshwater & Marine Ecology; Zoology
ISSN
0960-3166
eISSN
1573-5184
D.O.I.
10.1023/A:1008955229420
Publisher site
See Article on Publisher Site

Abstract

Many fish species contain morphologically, ecologically and geneticallydistinct populations that are sympatric during at least some portion oftheir life cycle. Such reproductively isolated populations act asdistinct biological species, but are identified by a common Latinbinomial. These ‘species pairs’ are particularly common in freshwaterfish families such as Salmonidae, Gasterosteidae and Osmeridae and aretypically associated with postglacial lakes in north temperateenvironments. The nature of the divergences between sympatric species,factors contributing to reproductive isolation, and modes of evolutionare reviewed with particular emphasis on benthic and limnetic pairs ofthreespine sticklebacks, Gasterosteus aculeatus, and anadromous(sockeye salmon) and nonanadromous (kokanee) pairs of Oncorhynchusnerka. Phylogenetic analyses typically indicate that divergencesbetween members of replicate pairs have occurred independently and,hence, particular phenotypes are not monophyletic. Consequently,taxonomic resolution of such ‘species complexes’ is a vexing problem foradherents to our traditional Linnaean classification system. Sympatricspecies pairs represent a significant component of the biodiversity oftemperate freshwater ecosystems which may be underestimated because oursystem of formal taxonomy tends to obscure diversity encompassed byspecies pairs. Conservation of such systems should be recognized as apriority without formal taxonomic designation of members of speciespairs because taxonomic resolution will likely continue to proveextremely difficult when employing traditional hierarchies andprocedures.

Journal

Reviews in Fish Biology and FisheriesSpringer Journals

Published: Oct 15, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off