Spatiotemporal modeling and prediction of soil heavy metals based on spatiotemporal cokriging

Spatiotemporal modeling and prediction of soil heavy metals based on spatiotemporal cokriging Soil heavy metals exhibit significant spatiotemporal variability and are strongly correlated with other soil heavy metals. Thus, other heavy metals can be used to improve the accuracy of predictions when performing spatiotemporal predictions of soil heavy metals within a given area. In this study, we propose the spatiotemporal cokriging (STCK) method to enable the use of historical sampling points and co-variables in the spatial prediction of soil heavy metals. Moreover, experimental spatiotemporal (ST) semivariogram and ST cross-semivariogram computational methods, a fitting strategy to the ST semivariogram and ST cross-semivariogram models based on the Bilonick model, and the STCK interpolation algorithm are introduced; these methods are based on spatiotemporal kriging (STK) and cokriging (CK). The data used in this study consist of measurements of soil heavy metals from 2010 to 2014 in Wuhan City, China. The results show that the behavior of predictions of the concentrations of heavy metals in soils is physically more realistic, and the prediction uncertainties are slightly smaller, when STCK is used with greater numbers of co-variables and neighboring points. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Scientific Reports Springer Journals

Spatiotemporal modeling and prediction of soil heavy metals based on spatiotemporal cokriging

Loading next page...
 
/lp/springer_journal/spatiotemporal-modeling-and-prediction-of-soil-heavy-metals-based-on-QBE0ZwRDb3
Publisher
Nature Publishing Group UK
Copyright
Copyright © 2017 by The Author(s)
Subject
Science, Humanities and Social Sciences, multidisciplinary; Science, Humanities and Social Sciences, multidisciplinary; Science, multidisciplinary
eISSN
2045-2322
D.O.I.
10.1038/s41598-017-17018-5
Publisher site
See Article on Publisher Site

Abstract

Soil heavy metals exhibit significant spatiotemporal variability and are strongly correlated with other soil heavy metals. Thus, other heavy metals can be used to improve the accuracy of predictions when performing spatiotemporal predictions of soil heavy metals within a given area. In this study, we propose the spatiotemporal cokriging (STCK) method to enable the use of historical sampling points and co-variables in the spatial prediction of soil heavy metals. Moreover, experimental spatiotemporal (ST) semivariogram and ST cross-semivariogram computational methods, a fitting strategy to the ST semivariogram and ST cross-semivariogram models based on the Bilonick model, and the STCK interpolation algorithm are introduced; these methods are based on spatiotemporal kriging (STK) and cokriging (CK). The data used in this study consist of measurements of soil heavy metals from 2010 to 2014 in Wuhan City, China. The results show that the behavior of predictions of the concentrations of heavy metals in soils is physically more realistic, and the prediction uncertainties are slightly smaller, when STCK is used with greater numbers of co-variables and neighboring points.

Journal

Scientific ReportsSpringer Journals

Published: Dec 1, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off