Spatiotemporal Analysis of Housing Prices in China: A Big Data Perspective

Spatiotemporal Analysis of Housing Prices in China: A Big Data Perspective Due to the rapid economic growth and urbanization, China’s real estate industry has been undergoing a fast-paced development in recent decades. However, the spatial imbalance between the economic growth in urban and that in rural areas and the excessive growth and fluctuations of house prices in both areas had quickly caught public’s attention. Not surprisingly, these issues had become a focus of urban and regional economic research. Efficient and accurate prediction of housing prices remains a much needed but disputable topic. Currently, based on the trends and changes in the financial market, population migration and urbanization processes, numerous case studies have been developed to evaluate the mechanism of real estate’s price fluctuations. However, few studies were conducted to examine the space-time dynamics of how housing prices fluctuated from a big data perspective. Using data from China’s leading online real estate platform {sofang.com}, we investigated the spatiotemporal trends of the fluctuations of housing prices in the context of big data. This paper uses spatial data analytics and modeling techniques to: first, identify the spatial distribution of housing prices at micro level; second, explore the space-time dynamics of residential properties in the market; and third, detect if there exist geographic disparity in terms of housing prices. Results from our analysis revealed the space-time patterns of the housing prices in a large metropolitan area, demonstrating the utility of big data and means of analyzing big data. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Spatial Analysis and Policy Springer Journals

Spatiotemporal Analysis of Housing Prices in China: A Big Data Perspective

Loading next page...
 
/lp/springer_journal/spatiotemporal-analysis-of-housing-prices-in-china-a-big-data-Kyw4epqQ1g
Publisher
Springer Netherlands
Copyright
Copyright © 2016 by Springer Science+Business Media Dordrecht
Subject
Social Sciences; Human Geography; Landscape/Regional and Urban Planning; Regional/Spatial Science
ISSN
1874-463X
eISSN
1874-4621
D.O.I.
10.1007/s12061-016-9185-3
Publisher site
See Article on Publisher Site

Abstract

Due to the rapid economic growth and urbanization, China’s real estate industry has been undergoing a fast-paced development in recent decades. However, the spatial imbalance between the economic growth in urban and that in rural areas and the excessive growth and fluctuations of house prices in both areas had quickly caught public’s attention. Not surprisingly, these issues had become a focus of urban and regional economic research. Efficient and accurate prediction of housing prices remains a much needed but disputable topic. Currently, based on the trends and changes in the financial market, population migration and urbanization processes, numerous case studies have been developed to evaluate the mechanism of real estate’s price fluctuations. However, few studies were conducted to examine the space-time dynamics of how housing prices fluctuated from a big data perspective. Using data from China’s leading online real estate platform {sofang.com}, we investigated the spatiotemporal trends of the fluctuations of housing prices in the context of big data. This paper uses spatial data analytics and modeling techniques to: first, identify the spatial distribution of housing prices at micro level; second, explore the space-time dynamics of residential properties in the market; and third, detect if there exist geographic disparity in terms of housing prices. Results from our analysis revealed the space-time patterns of the housing prices in a large metropolitan area, demonstrating the utility of big data and means of analyzing big data.

Journal

Applied Spatial Analysis and PolicySpringer Journals

Published: Mar 14, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off