Spatio-temporal data reduction with deterministic error bounds

Spatio-temporal data reduction with deterministic error bounds A common way of storing spatio-temporal information about mobile devices is in the form of a 3D (2D geography + time) trajectory. We argue that when cellular phones and Personal Digital Assistants become location-aware, the size of the spatio-temporal information generated may prohibit efficient processing. We propose to adopt a technique studied in computer graphics, namely line-simplification, as an approximation technique to solve this problem. Line simplification will reduce the size of the trajectories. Line simplification uses a distance function in producing the trajectory approximation. We postulate the desiderata for such a distance-function: it should be sound, namely the error of the answers to spatio-temporal queries must be bounded. We analyze several distance functions, and prove that some are sound in this sense for some types of queries, while others are not. A distance function that is sound for all common spatio-temporal query types is introduced and analyzed. Then we propose an aging mechanism which gradually shrinks the size of the trajectories as time progresses. We also propose to adopt existing linguistic constructs to manage the uncertainty introduced by the trajectory approximation. Finally, we analyze experimentally the effectiveness of line-simplification in reducing the size of a trajectories database. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals

Spatio-temporal data reduction with deterministic error bounds

Loading next page...
 
/lp/springer_journal/spatio-temporal-data-reduction-with-deterministic-error-bounds-QpGArlKzPF
Publisher
Springer-Verlag
Copyright
Copyright © 2006 by Springer-Verlag
Subject
Computer Science; Database Management
ISSN
1066-8888
eISSN
0949-877X
D.O.I.
10.1007/s00778-005-0163-7
Publisher site
See Article on Publisher Site

References

  • Managing uncertainty in moving objects databases
    Trajcevski, G.; Wolfson, O.; Hinrichs, K.; Chamberlain, S.
  • Some map matching algorithms for personal navigation assistants
    White, C.E.; Bernstein, D.; Kornhauser, A.L.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial