Spatial variation in tree characteristics and yield in a pear orchard

Spatial variation in tree characteristics and yield in a pear orchard We examined the spatial structure of fruit yield, tree size, vigor, and soil properties for an established pear orchard using Moran’s I, geographically weighted regression (GWR) and variogram analysis to determine potential scales of the factors affecting spatial variation. The spatial structure differed somewhat between the tree-based measurements (yield, size and vigor) and the soil properties. Yield, trunk cross-sectional area (TCSA) and normalized difference vegetation index (NDVI, used as a surrogate for vigor) were strongly spatially clustered as indicated by the global Moran’s I for these measurements. The autocorrelation between trees (determined by applying a localized Moran’s I) was greater in some areas than others, suggesting possible management by zones. The variogram ranges for TCSA and yield were 30–45 m, respectively, but large nugget variances indicated considerable variability from tree to tree. The variogram ranges of NDVI varied from about 14–27 m. The soil properties copper, iron, organic matter and total exchange capacity (TEC) were spatially structured, with longer variogram ranges than those of the tree characteristics: 31–95 m. Boron, pH and zinc were not spatially correlated. The GWR analyses supported the results from the other analyses indicating that assumptions of strict stationarity might be violated, so regression models fitted to the entire dataset might not be fitted optimally to spatial clusters of the data. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Precision Agriculture Springer Journals

Spatial variation in tree characteristics and yield in a pear orchard

Loading next page...
 
/lp/springer_journal/spatial-variation-in-tree-characteristics-and-yield-in-a-pear-orchard-QLJ7leA3I1
Publisher
Springer US
Copyright
Copyright © 2009 by Springer Science+Business Media, LLC
Subject
Life Sciences; Agriculture; Soil Science & Conservation; Remote Sensing/Photogrammetry; Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences; Atmospheric Sciences
ISSN
1385-2256
eISSN
1573-1618
D.O.I.
10.1007/s11119-009-9113-5
Publisher site
See Article on Publisher Site

Abstract

We examined the spatial structure of fruit yield, tree size, vigor, and soil properties for an established pear orchard using Moran’s I, geographically weighted regression (GWR) and variogram analysis to determine potential scales of the factors affecting spatial variation. The spatial structure differed somewhat between the tree-based measurements (yield, size and vigor) and the soil properties. Yield, trunk cross-sectional area (TCSA) and normalized difference vegetation index (NDVI, used as a surrogate for vigor) were strongly spatially clustered as indicated by the global Moran’s I for these measurements. The autocorrelation between trees (determined by applying a localized Moran’s I) was greater in some areas than others, suggesting possible management by zones. The variogram ranges for TCSA and yield were 30–45 m, respectively, but large nugget variances indicated considerable variability from tree to tree. The variogram ranges of NDVI varied from about 14–27 m. The soil properties copper, iron, organic matter and total exchange capacity (TEC) were spatially structured, with longer variogram ranges than those of the tree characteristics: 31–95 m. Boron, pH and zinc were not spatially correlated. The GWR analyses supported the results from the other analyses indicating that assumptions of strict stationarity might be violated, so regression models fitted to the entire dataset might not be fitted optimally to spatial clusters of the data.

Journal

Precision AgricultureSpringer Journals

Published: Mar 21, 2009

References

  • Multi-scale assessment of the risk of soil salinization in an area of south-eastern Sardinia (Italy)
    Castrignanò, A; Buttafuoco, G; Puddu, R

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off