Spatial structures and scaling in the Convective Boundary Layer

Spatial structures and scaling in the Convective Boundary Layer We performed an investigation on spatial features of the Convective Boundary Layer (CBL) of the atmosphere, which was simulated in a laboratory model and analyzed by means of image analysis techniques. This flow is dominated by large, anisotropic vortical structures, whose spatial organization affects the scalar transport and therefore the fluxes across the boundary layer. With the aim of investigating the spatial structure and scaling in the Convective Boundary Layer, two-dimensional velocity fields were measured, on a vertical plane, by means of a pyramidal Lucas–Kanade algorithm. The coherent structures characterizing the turbulent convection were educed by analyzing the Finite-Time Lyapunov Exponent fields, which also revealed interesting phenomenological features linked to the mixing processes occurring in the Convective Boundary Layer. Both velocity and vorticity fields were analyzed in a scale-invariance framework. Data analysis showed that normalized probability distribution functions for velocity differences are dependent on the scale and tend to become Gaussian for large separations. Extended Self Similarity holds true for velocity structure functions computed within the mixing layer, and their scaling exponents are interpreted well in the phenomenological framework of the Hierarchical Structure Model. Specifically, β parameter, which is related to the similarity between weak and strong vortices, reveals a higher degree of intermittency for the vertical velocity component with respect to the horizontal one. On the other hand, the analysis of circulation structure functions shows that scaling exponents are fairly constant in the lowest part of the mixed layer, and their values are in agreement with those reported in Benzi et al. (Phys Rev E 55:3739–3742, 1997) for shear turbulence. Moreover, the relationship between circulation and velocity scaling exponents is analyzed, and it is found to be linear in the bottom part of the mixing layer. The investigation of the CBL spatial features, which has seldom been studied experimentally, has important implications for the comprehension of the mixing dynamics, as well as in turbulence closure models. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Spatial structures and scaling in the Convective Boundary Layer

Loading next page...
 
/lp/springer_journal/spatial-structures-and-scaling-in-the-convective-boundary-layer-ymTZDdstBO
Publisher
Springer-Verlag
Copyright
Copyright © 2010 by Springer-Verlag
Subject
Engineering; Engineering Thermodynamics, Heat and Mass Transfer; Engineering Fluid Dynamics; Fluid- and Aerodynamics
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-010-1020-z
Publisher site
See Article on Publisher Site

Abstract

We performed an investigation on spatial features of the Convective Boundary Layer (CBL) of the atmosphere, which was simulated in a laboratory model and analyzed by means of image analysis techniques. This flow is dominated by large, anisotropic vortical structures, whose spatial organization affects the scalar transport and therefore the fluxes across the boundary layer. With the aim of investigating the spatial structure and scaling in the Convective Boundary Layer, two-dimensional velocity fields were measured, on a vertical plane, by means of a pyramidal Lucas–Kanade algorithm. The coherent structures characterizing the turbulent convection were educed by analyzing the Finite-Time Lyapunov Exponent fields, which also revealed interesting phenomenological features linked to the mixing processes occurring in the Convective Boundary Layer. Both velocity and vorticity fields were analyzed in a scale-invariance framework. Data analysis showed that normalized probability distribution functions for velocity differences are dependent on the scale and tend to become Gaussian for large separations. Extended Self Similarity holds true for velocity structure functions computed within the mixing layer, and their scaling exponents are interpreted well in the phenomenological framework of the Hierarchical Structure Model. Specifically, β parameter, which is related to the similarity between weak and strong vortices, reveals a higher degree of intermittency for the vertical velocity component with respect to the horizontal one. On the other hand, the analysis of circulation structure functions shows that scaling exponents are fairly constant in the lowest part of the mixed layer, and their values are in agreement with those reported in Benzi et al. (Phys Rev E 55:3739–3742, 1997) for shear turbulence. Moreover, the relationship between circulation and velocity scaling exponents is analyzed, and it is found to be linear in the bottom part of the mixing layer. The investigation of the CBL spatial features, which has seldom been studied experimentally, has important implications for the comprehension of the mixing dynamics, as well as in turbulence closure models.

Journal

Experiments in FluidsSpringer Journals

Published: Dec 28, 2010

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off