Spatial structure of the flow through an axisymmetric sudden expansion

Spatial structure of the flow through an axisymmetric sudden expansion Spatio-temporal velocity fields of an axisymmetric sudden expansion were measured using an ultrasonic velocity profiler and analyzed to investigate the transitional scheme of the spatial structure using two-dimensional Fourier transform and proper orthogonal decomposition techniques. The variation of the zero-crossing point, the fluctuation energy directed upstream and the eigenmode spectrum all have the same transitional scheme as a function of the Reynolds number. The transitional scheme can be classified Re d<1,000 for the laminar regime, Re d=1,000–3,000 for the transitional regime and Re d>3,000 for the turbulent regime. Especially, in the transitional regime, we found large changes in the flow structure at Re d=1,500 and 2,000. The jump at Re d=2,000 is caused by the change in the flow condition upstream. The jump at Re d=1,500 clearly shows a change in the spatial structure of the flow. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Spatial structure of the flow through an axisymmetric sudden expansion

Loading next page...
 
/lp/springer_journal/spatial-structure-of-the-flow-through-an-axisymmetric-sudden-expansion-xcI3Au2i1G
Publisher
Springer-Verlag
Copyright
Copyright © 2003 by Springer-Verlag
Subject
Engineering
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-003-0612-2
Publisher site
See Article on Publisher Site

Abstract

Spatio-temporal velocity fields of an axisymmetric sudden expansion were measured using an ultrasonic velocity profiler and analyzed to investigate the transitional scheme of the spatial structure using two-dimensional Fourier transform and proper orthogonal decomposition techniques. The variation of the zero-crossing point, the fluctuation energy directed upstream and the eigenmode spectrum all have the same transitional scheme as a function of the Reynolds number. The transitional scheme can be classified Re d<1,000 for the laminar regime, Re d=1,000–3,000 for the transitional regime and Re d>3,000 for the turbulent regime. Especially, in the transitional regime, we found large changes in the flow structure at Re d=1,500 and 2,000. The jump at Re d=2,000 is caused by the change in the flow condition upstream. The jump at Re d=1,500 clearly shows a change in the spatial structure of the flow.

Journal

Experiments in FluidsSpringer Journals

Published: Apr 12, 2003

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off