Spatial Structure of a Reacting Turbulent Swirling Jet Flow with Combustion of a Propane–Air Mixture

Spatial Structure of a Reacting Turbulent Swirling Jet Flow with Combustion of a Propane–Air... Results of an experimental study of the spatial structure of a reacting flow during combustion of a propane–air mixture in a turbulent swirling jet escaping into atmospheric air are presented. The fuel-to-air equivalence ratio is φ = 0.7, and the Reynolds number of the jet is Re = 5 · 103. The time-averaged spatial distributions of velocity, local density, and concentrations of the main species of the gas mixture are measured in low-swirl and high-swirl flows. In both cases, the flame front is stabilized in the internal mixing layer formed by the axial region of jet retardation, where hot combustion products are concentrated. In a high-swirl flow, the temperature distributions in the cross section y/d = 0.5 show that the region with the maximum temperature of the gas is located at the periphery of the central recirculation zone. Moreover, in the case of a high-swirl flow, there exists a recirculation zone at the axis, and the CO2 concentration is twice higher than in a low-swirl jet. The opposite situation is observed for O2. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Combustion, Explosion, and Shock Waves Springer Journals

Spatial Structure of a Reacting Turbulent Swirling Jet Flow with Combustion of a Propane–Air Mixture

Loading next page...
 
/lp/springer_journal/spatial-structure-of-a-reacting-turbulent-swirling-jet-flow-with-T7Gzr7xBsn
Publisher
Pleiades Publishing
Copyright
Copyright © 2018 by Pleiades Publishing, Ltd.
Subject
Physics; Classical Mechanics; Classical and Continuum Physics; Physical Chemistry; Vibration, Dynamical Systems, Control; Engineering, general
ISSN
0010-5082
eISSN
1573-8345
D.O.I.
10.1134/S001050821803005X
Publisher site
See Article on Publisher Site

Abstract

Results of an experimental study of the spatial structure of a reacting flow during combustion of a propane–air mixture in a turbulent swirling jet escaping into atmospheric air are presented. The fuel-to-air equivalence ratio is φ = 0.7, and the Reynolds number of the jet is Re = 5 · 103. The time-averaged spatial distributions of velocity, local density, and concentrations of the main species of the gas mixture are measured in low-swirl and high-swirl flows. In both cases, the flame front is stabilized in the internal mixing layer formed by the axial region of jet retardation, where hot combustion products are concentrated. In a high-swirl flow, the temperature distributions in the cross section y/d = 0.5 show that the region with the maximum temperature of the gas is located at the periphery of the central recirculation zone. Moreover, in the case of a high-swirl flow, there exists a recirculation zone at the axis, and the CO2 concentration is twice higher than in a low-swirl jet. The opposite situation is observed for O2.

Journal

Combustion, Explosion, and Shock WavesSpringer Journals

Published: Jun 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off