Spatial geometry of stem cell proliferation in the adult hippocampus

Spatial geometry of stem cell proliferation in the adult hippocampus The modes of stem cell divisions (e.g., symmetric vs. asymmetric) can have a profound impact on the number of progeny and tissue growth, repair, and function. This is particularly relevant for adult neural stem cells, since stem cell-derived neurons affect cognitive and mental states, resistance to stress and disease, and response to therapies. Here we show that although dividing stem cells in the adult hippocampus display a certain bias towards paired distribution (which could imply the prevalence of symmetric divisions), this bias already exists in the distribution of the general population of stem cells and may be responsible for the perceived occurrence of symmetric stem cell divisions. Remarkably, the bias in the distribution of stem cells decreases with age. Our results argue that the preexisting bias in stem cell distribution may affect current assumptions regarding stem cell division and fate as well as conjectures on the prospects of brain repair and rejuvenation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Scientific Reports Springer Journals

Spatial geometry of stem cell proliferation in the adult hippocampus

Loading next page...
 
/lp/springer_journal/spatial-geometry-of-stem-cell-proliferation-in-the-adult-hippocampus-Ucm0zyqJff
Publisher
Nature Publishing Group UK
Copyright
Copyright © 2018 by The Author(s)
Subject
Science, Humanities and Social Sciences, multidisciplinary; Science, Humanities and Social Sciences, multidisciplinary; Science, multidisciplinary
eISSN
2045-2322
D.O.I.
10.1038/s41598-018-21078-6
Publisher site
See Article on Publisher Site

Abstract

The modes of stem cell divisions (e.g., symmetric vs. asymmetric) can have a profound impact on the number of progeny and tissue growth, repair, and function. This is particularly relevant for adult neural stem cells, since stem cell-derived neurons affect cognitive and mental states, resistance to stress and disease, and response to therapies. Here we show that although dividing stem cells in the adult hippocampus display a certain bias towards paired distribution (which could imply the prevalence of symmetric divisions), this bias already exists in the distribution of the general population of stem cells and may be responsible for the perceived occurrence of symmetric stem cell divisions. Remarkably, the bias in the distribution of stem cells decreases with age. Our results argue that the preexisting bias in stem cell distribution may affect current assumptions regarding stem cell division and fate as well as conjectures on the prospects of brain repair and rejuvenation.

Journal

Scientific ReportsSpringer Journals

Published: Feb 21, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off