Spatial filtering improved tomographic PIV

Spatial filtering improved tomographic PIV Tomographic reconstruction accuracy is of fundamental importance to obtain reliable three-dimensional three-components velocity field measurements when implementing tomographic particle image velocimetry. Algebraic methods (Herman and Lent 1976) are quite well established to handle the problem in case of high spatial frequency spots on a dark background imaged by a limited number of simultaneous views; however, their efficacy is limited in case of dense distributions to be reconstructed. In the present work, an easy implementable modified version of the commonly used multiplicative algebraic reconstruction technique is proposed, allowing a remarkable improvement of the tomographic reconstruction quality only slightly increasing the computational cost. The technique is based on artificial diffusion applied by Gaussian smoothing after each iteration of the reconstruction procedure. Numerical simulations show that the increase in the reconstruction quality leads to a significant reduction of the modulation effects in the velocity measurement due to the coherent ghost particles motion. An experimental application in fractal grid turbulence highlights an improvement of the signal strength and a reduction of the uncertainty in the velocity measurement. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Spatial filtering improved tomographic PIV

Loading next page...
 
/lp/springer_journal/spatial-filtering-improved-tomographic-piv-zl6cW0I6zX
Publisher
Springer-Verlag
Copyright
Copyright © 2013 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-013-1505-7
Publisher site
See Article on Publisher Site

Abstract

Tomographic reconstruction accuracy is of fundamental importance to obtain reliable three-dimensional three-components velocity field measurements when implementing tomographic particle image velocimetry. Algebraic methods (Herman and Lent 1976) are quite well established to handle the problem in case of high spatial frequency spots on a dark background imaged by a limited number of simultaneous views; however, their efficacy is limited in case of dense distributions to be reconstructed. In the present work, an easy implementable modified version of the commonly used multiplicative algebraic reconstruction technique is proposed, allowing a remarkable improvement of the tomographic reconstruction quality only slightly increasing the computational cost. The technique is based on artificial diffusion applied by Gaussian smoothing after each iteration of the reconstruction procedure. Numerical simulations show that the increase in the reconstruction quality leads to a significant reduction of the modulation effects in the velocity measurement due to the coherent ghost particles motion. An experimental application in fractal grid turbulence highlights an improvement of the signal strength and a reduction of the uncertainty in the velocity measurement.

Journal

Experiments in FluidsSpringer Journals

Published: Apr 3, 2013

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off