Spatial distribution of water status in irrigated olive orchards by thermal imaging

Spatial distribution of water status in irrigated olive orchards by thermal imaging Information regarding tree water status in irrigated olive orchards is essential for managing growth to optimize yields and olive oil quality. One management practice option is to monitor or sample individual trees and use this information for orchard-scale management. This study assessed the ability of thermal imaging to provide the spatial distribution and variability of tree water status in a commercial irrigated olive orchard, and described strategies and a procedure for choosing which individual trees best represent the orchard. The study employed gradual upscaling from individual trees grown in lysimeters, through a controlled experimental field plot, to a commercial orchard. Thermal imaging of olive trees grown in lysimeters attested the sensitivity of the technique to identify mild-level water stress by correlating crown temperatures to stem water potential. Knowledgeable choice of five or ten representative trees in the experimental plot, based on the histogram distribution obtained for the entire experimental orchard, lead to successful reconstruction of the spatial distribution of canopy temperature, and thus of water status. Positively skewed distributions of crown temperatures found in both the field plot and commercial orchard suggested distinct patterns, where the canopy temperature of the majority of the trees was lower than the average, and a relatively small number of trees had significantly higher temperatures and suggest commercial practicality of the proposed methodology. Thermal imaging can therefore serve as a useful tool for determining representative trees that, if frequently monitored, or instrumented with continuous water status sensors, can provide important information for orchard water management. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Precision Agriculture Springer Journals

Spatial distribution of water status in irrigated olive orchards by thermal imaging

Loading next page...
 
/lp/springer_journal/spatial-distribution-of-water-status-in-irrigated-olive-orchards-by-fuaVJyttJW
Publisher
Springer US
Copyright
Copyright © 2013 by Springer Science+Business Media New York
Subject
Life Sciences; Agriculture; Soil Science & Conservation; Remote Sensing/Photogrammetry; Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences; Atmospheric Sciences
ISSN
1385-2256
eISSN
1573-1618
D.O.I.
10.1007/s11119-013-9331-8
Publisher site
See Article on Publisher Site

Abstract

Information regarding tree water status in irrigated olive orchards is essential for managing growth to optimize yields and olive oil quality. One management practice option is to monitor or sample individual trees and use this information for orchard-scale management. This study assessed the ability of thermal imaging to provide the spatial distribution and variability of tree water status in a commercial irrigated olive orchard, and described strategies and a procedure for choosing which individual trees best represent the orchard. The study employed gradual upscaling from individual trees grown in lysimeters, through a controlled experimental field plot, to a commercial orchard. Thermal imaging of olive trees grown in lysimeters attested the sensitivity of the technique to identify mild-level water stress by correlating crown temperatures to stem water potential. Knowledgeable choice of five or ten representative trees in the experimental plot, based on the histogram distribution obtained for the entire experimental orchard, lead to successful reconstruction of the spatial distribution of canopy temperature, and thus of water status. Positively skewed distributions of crown temperatures found in both the field plot and commercial orchard suggested distinct patterns, where the canopy temperature of the majority of the trees was lower than the average, and a relatively small number of trees had significantly higher temperatures and suggest commercial practicality of the proposed methodology. Thermal imaging can therefore serve as a useful tool for determining representative trees that, if frequently monitored, or instrumented with continuous water status sensors, can provide important information for orchard water management.

Journal

Precision AgricultureSpringer Journals

Published: Sep 20, 2013

References

  • Evaluating water stress in irrigated olives: Correlation of soil water status, tree water status, and thermal imagery
    Ben-Gal, A; Agam, N; Alchanatis, V; Cohen, Y; Yermiyahu, U; Zipori, I
  • Mapping canopy conductance and CWSI in olive orchards using high resolution thermal remote sensing imagery
    Berni, JAJ; Zarco-Tejada, PJ; Sepulcre-Canto, G; Fereres, E; Villalobos, F

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off