Spatial Dependence, Housing Submarkets, and House Price Prediction

Spatial Dependence, Housing Submarkets, and House Price Prediction This paper compares alternative methods of controlling for the spatial dependence of house prices in a mass appraisal context. Explicit modeling of the error structure is characterized as a relatively fluid approach to defining housing submarkets. This approach allows the relevant submarket to vary from house to house and for transactions involving other dwellings in each submarket to have varying impacts depending on distance. We conclude that—for our Auckland, New Zealand, data—the gains in accuracy from including submarket variables in an ordinary least squares specification are greater than any benefits from using geostatistical or lattice methods. This conclusion is of practical importance, as a hedonic model with submarket dummy variables is substantially easier to implement than spatial statistical methods. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Real Estate Finance and Economics Springer Journals

Spatial Dependence, Housing Submarkets, and House Price Prediction

Loading next page...
 
/lp/springer_journal/spatial-dependence-housing-submarkets-and-house-price-prediction-0ixMzFGdzW
Publisher
Springer Journals
Copyright
Copyright © 2007 by Springer Science+Business Media, LLC
Subject
Economics; Regional/Spatial Science; Financial Services
ISSN
0895-5638
eISSN
1573-045X
D.O.I.
10.1007/s11146-007-9036-8
Publisher site
See Article on Publisher Site

Abstract

This paper compares alternative methods of controlling for the spatial dependence of house prices in a mass appraisal context. Explicit modeling of the error structure is characterized as a relatively fluid approach to defining housing submarkets. This approach allows the relevant submarket to vary from house to house and for transactions involving other dwellings in each submarket to have varying impacts depending on distance. We conclude that—for our Auckland, New Zealand, data—the gains in accuracy from including submarket variables in an ordinary least squares specification are greater than any benefits from using geostatistical or lattice methods. This conclusion is of practical importance, as a hedonic model with submarket dummy variables is substantially easier to implement than spatial statistical methods.

Journal

The Journal of Real Estate Finance and EconomicsSpringer Journals

Published: Jun 2, 2007

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off