Spatial Dependence and House Price Index Construction

Spatial Dependence and House Price Index Construction Accurate estimation of prevailing metropolitan housing prices is important for both business and research investigations of housing and mortgage markets. This is typically done by constructing quality-adjusted house price indices from hedonic price regressions for given metropolitan areas. A major limitation of currently available indices is their insensitivity to the geographic location of dwellings within the metropolitan area. Indices are constructed based on models that do not incorporate the underlying spatial structure in housing data sets. In this article, we argue that spatial structure, especially spatial dependence latent in housing data sets, will affect the precision and accuracy of resulting price estimates. We illustrate the importance of spatial dependence in both the specification and estimation of hedonic price models. Assessments are made on the importance of spatial dependence both on parameter estimates and on the accuracy of resulting indices. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Real Estate Finance and Economics Springer Journals

Spatial Dependence and House Price Index Construction

Loading next page...
 
/lp/springer_journal/spatial-dependence-and-house-price-index-construction-OCJ1SSkXHn
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 1997 by Kluwer Academic Publishers
Subject
Economics; Regional/Spatial Science; Financial Services
ISSN
0895-5638
eISSN
1573-045X
D.O.I.
10.1023/A:1007744706720
Publisher site
See Article on Publisher Site

Abstract

Accurate estimation of prevailing metropolitan housing prices is important for both business and research investigations of housing and mortgage markets. This is typically done by constructing quality-adjusted house price indices from hedonic price regressions for given metropolitan areas. A major limitation of currently available indices is their insensitivity to the geographic location of dwellings within the metropolitan area. Indices are constructed based on models that do not incorporate the underlying spatial structure in housing data sets. In this article, we argue that spatial structure, especially spatial dependence latent in housing data sets, will affect the precision and accuracy of resulting price estimates. We illustrate the importance of spatial dependence in both the specification and estimation of hedonic price models. Assessments are made on the importance of spatial dependence both on parameter estimates and on the accuracy of resulting indices.

Journal

The Journal of Real Estate Finance and EconomicsSpringer Journals

Published: Sep 30, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off