Spatial correlation of measured unsteady surface pressure behind a backward-facing step

Spatial correlation of measured unsteady surface pressure behind a backward-facing step The spatial correlations of the unsteady surface pressure for a backward-facing step were studied experimentally. The measurements were acquired using an array of surface pressure sensors within an anechoic wind tunnel which was designed to minimize acoustic contamination. The maximum Reynolds number based on the step height was 59,200. The spatial characteristics of the surface pressure were studied in two parts. First, a linear array of microphones oriented in the streamwise direction was used to obtain the evolution of the pressure spectra, length scale, and phase speed. Second, an array oriented in the spanwise direction was used to provide the coherence and integral length scales in that direction. The correlation length functions were found to vary with downstream location in the separated region behind the step. After reattachment, the integral scales of the surface pressure continued to increase in magnitude as far as 18 step heights downstream of the step. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Spatial correlation of measured unsteady surface pressure behind a backward-facing step

Loading next page...
 
/lp/springer_journal/spatial-correlation-of-measured-unsteady-surface-pressure-behind-a-HG0GD0g1eS
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2015 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-015-1897-7
Publisher site
See Article on Publisher Site

Abstract

The spatial correlations of the unsteady surface pressure for a backward-facing step were studied experimentally. The measurements were acquired using an array of surface pressure sensors within an anechoic wind tunnel which was designed to minimize acoustic contamination. The maximum Reynolds number based on the step height was 59,200. The spatial characteristics of the surface pressure were studied in two parts. First, a linear array of microphones oriented in the streamwise direction was used to obtain the evolution of the pressure spectra, length scale, and phase speed. Second, an array oriented in the spanwise direction was used to provide the coherence and integral length scales in that direction. The correlation length functions were found to vary with downstream location in the separated region behind the step. After reattachment, the integral scales of the surface pressure continued to increase in magnitude as far as 18 step heights downstream of the step.

Journal

Experiments in FluidsSpringer Journals

Published: Feb 6, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off