Spatial Autocorrelations and Urban Housing Market Segmentation

Spatial Autocorrelations and Urban Housing Market Segmentation This paper seeks to let data define urban housing market segments, replacing the conventional administrative or any pre-defined boundaries used in the previous housing submarket literature. We model housing transaction data using a conventional hedonic function. The hedonic residuals are used to estimate an isotropic semi-variogram, from which residual variance–covariance matrix is constructed. The correlations between hedonic residuals are used as identifier to assign housing units into clusters. Standard submarket identification tests are applied to each cluster to examine the segmentation of housing market. The results are compared with the prevailing structure of market segments. Weighted mean square test shows that the defined submarket structure can improve the precision of price prediction by 17.5%. This paper is experimental in the sense that it represents one of the first attempts at investigating market segmentation through house price spatial autocorrelations. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Real Estate Finance and Economics Springer Journals

Spatial Autocorrelations and Urban Housing Market Segmentation

Loading next page...
 
/lp/springer_journal/spatial-autocorrelations-and-urban-housing-market-segmentation-pjhaVXRz1L
Publisher
Kluwer Academic Publishers-Plenum Publishers
Copyright
Copyright © 2007 by Springer Science+Business Media, LLC
Subject
Economics; Regional/Spatial Science; Financial Services
ISSN
0895-5638
eISSN
1573-045X
D.O.I.
10.1007/s11146-007-9015-0
Publisher site
See Article on Publisher Site

Abstract

This paper seeks to let data define urban housing market segments, replacing the conventional administrative or any pre-defined boundaries used in the previous housing submarket literature. We model housing transaction data using a conventional hedonic function. The hedonic residuals are used to estimate an isotropic semi-variogram, from which residual variance–covariance matrix is constructed. The correlations between hedonic residuals are used as identifier to assign housing units into clusters. Standard submarket identification tests are applied to each cluster to examine the segmentation of housing market. The results are compared with the prevailing structure of market segments. Weighted mean square test shows that the defined submarket structure can improve the precision of price prediction by 17.5%. This paper is experimental in the sense that it represents one of the first attempts at investigating market segmentation through house price spatial autocorrelations.

Journal

The Journal of Real Estate Finance and EconomicsSpringer Journals

Published: Mar 8, 2007

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial