Spatial Analysis of Maize Response to Nitrogen Fertilizer in Central New York

Spatial Analysis of Maize Response to Nitrogen Fertilizer in Central New York An increasing number of farmers are considering the use of site-specific nitrogen (N) applications to maize (Zea mays L.) as a way of maximizing yield potential while minimizing fertilizer cost. The objectives of this 3-years experiment were to evaluate the spatial structure of yield response to N fertilizer and investigate the potential for site-specific N management under maize production in New York. Four experimental N rates (50, 110, 160, or 220 kg ha∧1), two tillage systems (chisel till and zone-till) and two crop rotations (maize•maize and maize•soybean (Glycine max L.)) were superimposed over a 12 ha field in central New York State with a complex of Honeoye-Lima, Kendaia, and Lima soils ranging from moderately well to poorly drained soils. Pre-sidedress soil nitrate tests (PSNT) showed significant spatial structure but did not conform to that for crop N response, indicating that N fertilizer recommendations based on PSNT results cannot be simply applied in a site-specific management approach. Optimal N rate varied from 110 kg ha ∧1 for the dry years 1999 and 2000 to 220 kg ha∧1 for 1998, with a warm wet spring. Tillage treatments were generally comparable in N response. Spatial yield response analysis showed limited field-scale regionalization of both yield and profit response to N, suggesting that site-specific application of nitrogen is impractical. The greatest source of variability in N requirements was observed with the annual effects of weather, and presents a greater potential for precise N application than site-specific application. Annual variations in optimum N rate were not related to annual yield differences and yield potential itself does not appear to be a good predictor of N needs. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Precision Agriculture Springer Journals

Spatial Analysis of Maize Response to Nitrogen Fertilizer in Central New York

Loading next page...
 
/lp/springer_journal/spatial-analysis-of-maize-response-to-nitrogen-fertilizer-in-central-jkueu83HHV
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2004 by Kluwer Academic Publishers
Subject
Life Sciences; Agriculture; Soil Science & Conservation; Remote Sensing/Photogrammetry; Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences; Atmospheric Sciences
ISSN
1385-2256
eISSN
1573-1618
D.O.I.
10.1007/s11119-004-5320-2
Publisher site
See Article on Publisher Site

Abstract

An increasing number of farmers are considering the use of site-specific nitrogen (N) applications to maize (Zea mays L.) as a way of maximizing yield potential while minimizing fertilizer cost. The objectives of this 3-years experiment were to evaluate the spatial structure of yield response to N fertilizer and investigate the potential for site-specific N management under maize production in New York. Four experimental N rates (50, 110, 160, or 220 kg ha∧1), two tillage systems (chisel till and zone-till) and two crop rotations (maize•maize and maize•soybean (Glycine max L.)) were superimposed over a 12 ha field in central New York State with a complex of Honeoye-Lima, Kendaia, and Lima soils ranging from moderately well to poorly drained soils. Pre-sidedress soil nitrate tests (PSNT) showed significant spatial structure but did not conform to that for crop N response, indicating that N fertilizer recommendations based on PSNT results cannot be simply applied in a site-specific management approach. Optimal N rate varied from 110 kg ha ∧1 for the dry years 1999 and 2000 to 220 kg ha∧1 for 1998, with a warm wet spring. Tillage treatments were generally comparable in N response. Spatial yield response analysis showed limited field-scale regionalization of both yield and profit response to N, suggesting that site-specific application of nitrogen is impractical. The greatest source of variability in N requirements was observed with the annual effects of weather, and presents a greater potential for precise N application than site-specific application. Annual variations in optimum N rate were not related to annual yield differences and yield potential itself does not appear to be a good predictor of N needs.

Journal

Precision AgricultureSpringer Journals

Published: Dec 30, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off