Spatial analysis for management zone delineation in a humid tropic cocoa plantation

Spatial analysis for management zone delineation in a humid tropic cocoa plantation Identifying spatio-temporal patterns of key soil properties could ensure efficient management and input use in agricultural fields with possible increase in yields. A multi-variate geostatistical approach was used to characterize the spatio-temporal variability of the key soil variables to determine management zones in a cocoa field (5.81 ha). One hundred and twenty soil samples were collected. Additionally, a total of nine apparent electrical conductivity (ECa) sampling campaigns at shallow, ECas (0–0.75 m) and deep, ECad (0.75–1.5 m) were conducted with a DUALEM-1S EC meter at the International Cocoa GeneBank, Trinidad between 2009 and 2010. ECad and ECas gave the strongest linear correlation with clay–silt content (r = 0.67 and r = 0.78, respectively) and soil solution electrical conductivity (ECe), ECe (r = 0.76 and r = 0.60, respectively). Multiple linear regressions indicated that clay–silt content and ECe dominated the signal surface response of both ECad and ECas accounting for 66.7 and 63.2 % of ECa variability, respectively. Spearman’s rank correlation coefficients (rs) ranged between 0.89 and 0.97 for ECad and 0.81 and 0.95 for ECas signifying strong temporal stability. Since ECas covers the depth where cocoa feeder roots concentrate, ECas of the wettest month surveyed (August 2009) was used as secondary data in cokriging to improve the spatial and temporal estimation of clay–silt content and ECe. Cokriged data was subjected to fuzzy cluster classification using the Management Zone Analyst software. Two was determined to be the optimum number of management zones. This zone delineation potentially facilitates cost-effective, environmentally friendly and energy efficient management of the field. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Precision Agriculture Springer Journals

Spatial analysis for management zone delineation in a humid tropic cocoa plantation

Loading next page...
 
/lp/springer_journal/spatial-analysis-for-management-zone-delineation-in-a-humid-tropic-JgFT8T45qN
Publisher
Springer Journals
Copyright
Copyright © 2014 by Springer Science+Business Media New York
Subject
Life Sciences; Agriculture; Soil Science & Conservation; Remote Sensing/Photogrammetry; Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences; Atmospheric Sciences
ISSN
1385-2256
eISSN
1573-1618
D.O.I.
10.1007/s11119-014-9366-5
Publisher site
See Article on Publisher Site

Abstract

Identifying spatio-temporal patterns of key soil properties could ensure efficient management and input use in agricultural fields with possible increase in yields. A multi-variate geostatistical approach was used to characterize the spatio-temporal variability of the key soil variables to determine management zones in a cocoa field (5.81 ha). One hundred and twenty soil samples were collected. Additionally, a total of nine apparent electrical conductivity (ECa) sampling campaigns at shallow, ECas (0–0.75 m) and deep, ECad (0.75–1.5 m) were conducted with a DUALEM-1S EC meter at the International Cocoa GeneBank, Trinidad between 2009 and 2010. ECad and ECas gave the strongest linear correlation with clay–silt content (r = 0.67 and r = 0.78, respectively) and soil solution electrical conductivity (ECe), ECe (r = 0.76 and r = 0.60, respectively). Multiple linear regressions indicated that clay–silt content and ECe dominated the signal surface response of both ECad and ECas accounting for 66.7 and 63.2 % of ECa variability, respectively. Spearman’s rank correlation coefficients (rs) ranged between 0.89 and 0.97 for ECad and 0.81 and 0.95 for ECas signifying strong temporal stability. Since ECas covers the depth where cocoa feeder roots concentrate, ECas of the wettest month surveyed (August 2009) was used as secondary data in cokriging to improve the spatial and temporal estimation of clay–silt content and ECe. Cokriged data was subjected to fuzzy cluster classification using the Management Zone Analyst software. Two was determined to be the optimum number of management zones. This zone delineation potentially facilitates cost-effective, environmentally friendly and energy efficient management of the field.

Journal

Precision AgricultureSpringer Journals

Published: Jul 10, 2014

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off