Sparse representations based distributed attribute learning for person re-identification

Sparse representations based distributed attribute learning for person re-identification Searching for specific persons from surveillance videos captured by different cameras, known as person re-identification, is a key yet under-addressed challenge. Difficulties arise from the large variations of human appearance in different poses, and from the different camera views that may be involved, making low-level descriptor representation unreliable. In this paper, we propose a novel Sparse Representations based Distributed Attribute Learning Model (SRDAL) to encode targets into semantic topics. Compared to other models such as ELF, our model performs best by imposing semantic restrictions onto the generation of human specific attributes and employing Deep Convolutional Neural Network to generate features without supervision for attributes learning model. Experimental results show that our method achieves state-of-the-art performance. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Multimedia Tools and Applications Springer Journals

Sparse representations based distributed attribute learning for person re-identification

Loading next page...
 
/lp/springer_journal/sparse-representations-based-distributed-attribute-learning-for-person-yqTrSVWtVY
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media, LLC
Subject
Computer Science; Multimedia Information Systems; Computer Communication Networks; Data Structures, Cryptology and Information Theory; Special Purpose and Application-Based Systems
ISSN
1380-7501
eISSN
1573-7721
D.O.I.
10.1007/s11042-017-4967-4
Publisher site
See Article on Publisher Site

Abstract

Searching for specific persons from surveillance videos captured by different cameras, known as person re-identification, is a key yet under-addressed challenge. Difficulties arise from the large variations of human appearance in different poses, and from the different camera views that may be involved, making low-level descriptor representation unreliable. In this paper, we propose a novel Sparse Representations based Distributed Attribute Learning Model (SRDAL) to encode targets into semantic topics. Compared to other models such as ELF, our model performs best by imposing semantic restrictions onto the generation of human specific attributes and employing Deep Convolutional Neural Network to generate features without supervision for attributes learning model. Experimental results show that our method achieves state-of-the-art performance.

Journal

Multimedia Tools and ApplicationsSpringer Journals

Published: Jul 15, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off