SparkJet characterizations in quiescent and supersonic flowfields

SparkJet characterizations in quiescent and supersonic flowfields The aerodynamic community has studied active flow control actuators for some time, and developments have led to a wide variety of devices with various features and operating mechanisms. The design requirements for a practical actuator used for active flow control include reliable operation, requisite frequency and amplitude modulation capabilities, and a reasonable lifespan while maintaining minimal cost and design complexity. An active flow control device called the SparkJet actuator has been developed for high-speed flight control and incorporates no mechanical/moving parts, zero net mass flux capabilities and the ability to tune the operating frequency and momentum throughput. This actuator utilizes electrical power to deliver high-momentum flow with a very fast response time. The SparkJet actuator was characterized on the benchtop using a laser-based microschlieren visualization technique and maximum blast wave and jet front velocities of ~400 and ~310 m/s were, respectively, measured in the flowfield. An increase in jet front velocity from 240 to 310 m/s during subatmospheric (60 kPa) testing reveals that the actuator may have greater control authority at lower ambient pressures, which correspond to high-altitude flight conditions for air vehicles. A SparkJet array was integrated into a flat plate and tested in a Mach 1.5 crossflow. Phase-conditioned shadowgraph results revealed a maximum flow deflection angle of 5° created by the SparkJet 275 µs after the actuator was triggered in single-shot mode. Burst mode operation of frequencies up to 700 Hz revealed similar results during wind tunnel testing. Following these tests, the actuator trigger mechanism was improved and the ability of the actuator to be discharged in burst mode at a frequency of 1 kHz was achieved. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

SparkJet characterizations in quiescent and supersonic flowfields

Loading next page...
 
/lp/springer_journal/sparkjet-characterizations-in-quiescent-and-supersonic-flowfields-h56G0HQzPv
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2014 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-014-1858-6
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial