Space‒time inhomogeneity of the electron flow in pyroelectric X-ray sources

Space‒time inhomogeneity of the electron flow in pyroelectric X-ray sources The operating conditions of X-Ray sources based on LiNbO3 crystals are investigated during heating-cooling cycles. It is demonstrated that the radiation intensity is unstable. The radiation is accompanied by electrical breakdowns in the Z plane of the crystals and emission of photon packets not described by the Poisson distribution. Visualization of the electron beam through the grid electrode by a luminescent screen showed that the electron beam is not uniform in the Z-plane of the crystal and greatly changes with temperature. It is found that, under definite conditions, the numerous redistributions of the intense emission zones occurred between different areas at Z-surface of the crystal. Possible reasons for the observed effects are examined. The obtained data are important for creating pyroelectric X-ray and neutron sources presuming the usage of strong electric fields whose strength reaches 105 V/cm. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques Springer Journals

Space‒time inhomogeneity of the electron flow in pyroelectric X-ray sources

Loading next page...
 
/lp/springer_journal/space-time-inhomogeneity-of-the-electron-flow-in-pyroelectric-x-ray-uIC3az3hng
Publisher
Pleiades Publishing
Copyright
Copyright © 2017 by Pleiades Publishing, Ltd.
Subject
Materials Science; Surfaces and Interfaces, Thin Films
ISSN
1027-4510
eISSN
1819-7094
D.O.I.
10.1134/S1027451017040048
Publisher site
See Article on Publisher Site

Abstract

The operating conditions of X-Ray sources based on LiNbO3 crystals are investigated during heating-cooling cycles. It is demonstrated that the radiation intensity is unstable. The radiation is accompanied by electrical breakdowns in the Z plane of the crystals and emission of photon packets not described by the Poisson distribution. Visualization of the electron beam through the grid electrode by a luminescent screen showed that the electron beam is not uniform in the Z-plane of the crystal and greatly changes with temperature. It is found that, under definite conditions, the numerous redistributions of the intense emission zones occurred between different areas at Z-surface of the crystal. Possible reasons for the observed effects are examined. The obtained data are important for creating pyroelectric X-ray and neutron sources presuming the usage of strong electric fields whose strength reaches 105 V/cm.

Journal

Journal of Surface Investigation. X-ray, Synchrotron and Neutron TechniquesSpringer Journals

Published: Aug 24, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off