Sorption specificity and desorption hysteresis of gibberellic acid on ferrihydrite compared to goethite, hematite, montmorillonite, and kaolinite

Sorption specificity and desorption hysteresis of gibberellic acid on ferrihydrite compared to... The pesticide gibberellic acid (GA3) is a potential endocrine disruptor and environmental toxin; therefore, research into its environmental fate is warranted. Batch studies were conducted to investigate the sorption and desorption characteristics of GA3 on aquifer media. The results demonstrated special sorption characteristic of GA3 on ferrihydrite compared to goethite, hematite, montmorillonite, and kaolinite, where the sorption kinetics of GA3 on ferrihydrite was fitted well with the pseudo-second-order, Elovich, and intra-particle diffusion models. The sorption kinetics of GA3 on ferrihydrite indicated an initial high sorption rate followed by a slow reaction process. The initial high GA3 sorption rate may be related to electrostatic sorption and surface complexation reactions on the outer surfaces and at the macropore entrances of ferrihydrite. While the slow step was controlled by GA3 diffusion into mesopore of ferrihydrite. Analysis of the desorption hysteresis indicated a high hysteresis index (HI) ranging from 0.68 to 17.32, and a low desorption percentage ranging from 18 to 48%. After sufficient desorption, the calculated maximum residual GA3 quantity due to surface complexation reactions with the ferrihydrite coordinated unsaturated sites was 9.05 ± 0.12 mg g−1. The calculated maximum quantity of GA3 trapped within the mesopore was 16.23 ± 0.91 mg g−1. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Environmental Science and Pollution Research Springer Journals

Sorption specificity and desorption hysteresis of gibberellic acid on ferrihydrite compared to goethite, hematite, montmorillonite, and kaolinite

Loading next page...
 
/lp/springer_journal/sorption-specificity-and-desorption-hysteresis-of-gibberellic-acid-on-S1s1KbBsFU
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Springer-Verlag GmbH Germany
Subject
Environment; Environment, general; Environmental Chemistry; Ecotoxicology; Environmental Health; Atmospheric Protection/Air Quality Control/Air Pollution; Waste Water Technology / Water Pollution Control / Water Management / Aquatic Pollution
ISSN
0944-1344
eISSN
1614-7499
D.O.I.
10.1007/s11356-017-9445-z
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial