Sorption investigation on the removal of metal ions from aqueous solutions using chelating terpolymer resin

Sorption investigation on the removal of metal ions from aqueous solutions using chelating... A novel chelating terpolymer resin has been synthesized from anthranilic acid, phenylhydrazine, and formaldehyde by condensation in glacial acetic acid. The structure of the chelating resin was clearly elucidated by use of a variety of spectral techniques, for example FTIR, and 1H and 13C NMR spectroscopy. The average molecular weight of the terpolymer resin was determined by gel-permeation chromatography. The empirical formula and empirical weight of the resin were determined by elemental analysis. The physicochemical properties of the terpolymer resin were determined. Scanning electron microscopy was used to establish the surface features of the chelating resin. The ion-exchange behaviour of the resin for specific metal ions, viz. Fe3+, Co2+, Ni2+, Cu2+, Zn2+, and Pb2+, was evaluated by a batch equilibrium method. The study was extended to three variations: evaluation of metal ion uptake in the presence of different electrolytes at different concentrations; evaluation of metal ion uptake at different pH; and evaluation of metal ion uptake at different times. Further, the reusability of the resin was also determined to assess the efficiency of the resin after a few cycles of sorption. From the results it was observed that the resin acts as an effective chelating ion-exchanger. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Sorption investigation on the removal of metal ions from aqueous solutions using chelating terpolymer resin

Loading next page...
 
/lp/springer_journal/sorption-investigation-on-the-removal-of-metal-ions-from-aqueous-OkzviciPIO
Publisher
Springer Netherlands
Copyright
Copyright © 2012 by Springer Science+Business Media B.V.
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-012-0534-9
Publisher site
See Article on Publisher Site

Abstract

A novel chelating terpolymer resin has been synthesized from anthranilic acid, phenylhydrazine, and formaldehyde by condensation in glacial acetic acid. The structure of the chelating resin was clearly elucidated by use of a variety of spectral techniques, for example FTIR, and 1H and 13C NMR spectroscopy. The average molecular weight of the terpolymer resin was determined by gel-permeation chromatography. The empirical formula and empirical weight of the resin were determined by elemental analysis. The physicochemical properties of the terpolymer resin were determined. Scanning electron microscopy was used to establish the surface features of the chelating resin. The ion-exchange behaviour of the resin for specific metal ions, viz. Fe3+, Co2+, Ni2+, Cu2+, Zn2+, and Pb2+, was evaluated by a batch equilibrium method. The study was extended to three variations: evaluation of metal ion uptake in the presence of different electrolytes at different concentrations; evaluation of metal ion uptake at different pH; and evaluation of metal ion uptake at different times. Further, the reusability of the resin was also determined to assess the efficiency of the resin after a few cycles of sorption. From the results it was observed that the resin acts as an effective chelating ion-exchanger.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Mar 22, 2012

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off