Sorbitol Uptake in Plasma Membrane Vesicles Isolated from Immortalized Rabbit TALH Cells: Activation by a Ca2+/Calmodulin-dependent Protein Kinase

Sorbitol Uptake in Plasma Membrane Vesicles Isolated from Immortalized Rabbit TALH Cells:... Apical plasma membrane vesicles were isolated from cultures of immortalized thick ascending limb of Henle's loop (TALH) cells and sorbitol uptake was investigated using a rapid filtration technique. In the presence of Mg2+, Ca2+, ATP, and GTP sorbitol equilibrated within three minutes with the intravesicular space; this uptake was reduced by 75% when the incubation temperature was decreased from 37°C to 4°C. A lower level of uptake was also observed in the presence of 100 μm quinidine and when Ca2+ or ATP were omitted from the medium. Membranes preincubated with Mg2+, Ca2+, ATP, and GTP showed, however, a high sorbitol uptake in ATP-free medium. Staurosporine, but only at high concentrations of 200 nm, inhibited sorbitol uptake when present during the transport experiments or during the preincubation with ATP. Similar results were obtained with 1 μm trifluoperazine. Protein kinase C inhibitory peptide was ineffective whereas 20 nm KT 5926, at low concentrations a specific inhibitor of Ca2+/calmodulin-dependent kinase, attenuated the activation. On the basis of these data we suggest that a Ca2+/calmodulin-dependent kinase is a mediator of regulation of sorbitol plasma membrane permeability in renal medullary cells. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Sorbitol Uptake in Plasma Membrane Vesicles Isolated from Immortalized Rabbit TALH Cells: Activation by a Ca2+/Calmodulin-dependent Protein Kinase

Loading next page...
 
/lp/springer_journal/sorbitol-uptake-in-plasma-membrane-vesicles-isolated-from-immortalized-G8niqaWDyh
Publisher
Springer-Verlag
Copyright
Copyright © Inc. by 1997 Springer-Verlag New York
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s002329900286
Publisher site
See Article on Publisher Site

Abstract

Apical plasma membrane vesicles were isolated from cultures of immortalized thick ascending limb of Henle's loop (TALH) cells and sorbitol uptake was investigated using a rapid filtration technique. In the presence of Mg2+, Ca2+, ATP, and GTP sorbitol equilibrated within three minutes with the intravesicular space; this uptake was reduced by 75% when the incubation temperature was decreased from 37°C to 4°C. A lower level of uptake was also observed in the presence of 100 μm quinidine and when Ca2+ or ATP were omitted from the medium. Membranes preincubated with Mg2+, Ca2+, ATP, and GTP showed, however, a high sorbitol uptake in ATP-free medium. Staurosporine, but only at high concentrations of 200 nm, inhibited sorbitol uptake when present during the transport experiments or during the preincubation with ATP. Similar results were obtained with 1 μm trifluoperazine. Protein kinase C inhibitory peptide was ineffective whereas 20 nm KT 5926, at low concentrations a specific inhibitor of Ca2+/calmodulin-dependent kinase, attenuated the activation. On the basis of these data we suggest that a Ca2+/calmodulin-dependent kinase is a mediator of regulation of sorbitol plasma membrane permeability in renal medullary cells.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Oct 1, 1997

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off