Some spectroscopic aspects of electron transfer in ruthenium(II) polypyridyl complexes

Some spectroscopic aspects of electron transfer in ruthenium(II) polypyridyl complexes The metal-to-ligand charge transfer (MLCT) absorption and emission properties of several ruthenium(II)-bipyridine am(m)ine complexes are compared. The Gaussian deconvolution of the spectra indicates that: (a) the emission MLCT bandwidths are smaller than the absorption bandwidths for the first components of the apparent vibronic progressions; (b) the emission bands decrease in energy and width when a polypyridyl is replaced by an am(m)ine. The observations can be interpreted in terms of a two state model and the perturbation theory-based treatment of the attenuation of the effective reorganizational energy, λr =~ λr o(1- 4α2 DA), where λr o is the reorganizational energy corresponding to no mixing between the two electron transfer states and αDA = (HDA/EDA) is the mixing coefficient. Both the solvent and molecular contributions to λr are attenuated. The MLCT excited state lifetimes also decrease with am(m)ine substitution, and the non-radiative decay rate constant at 77 K is roughly proportional to the number of am(m)ine moieties coordinated to the ruthenium center. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Some spectroscopic aspects of electron transfer in ruthenium(II) polypyridyl complexes

Loading next page...
 
/lp/springer_journal/some-spectroscopic-aspects-of-electron-transfer-in-ruthenium-ii-kPnl2s0dGZ
Publisher
Brill Academic Publishers
Copyright
Copyright © 2002 by VSP 2002
Subject
Chemistry; Inorganic Chemistry; Physical Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1163/15685670260469401
Publisher site
See Article on Publisher Site

Abstract

The metal-to-ligand charge transfer (MLCT) absorption and emission properties of several ruthenium(II)-bipyridine am(m)ine complexes are compared. The Gaussian deconvolution of the spectra indicates that: (a) the emission MLCT bandwidths are smaller than the absorption bandwidths for the first components of the apparent vibronic progressions; (b) the emission bands decrease in energy and width when a polypyridyl is replaced by an am(m)ine. The observations can be interpreted in terms of a two state model and the perturbation theory-based treatment of the attenuation of the effective reorganizational energy, λr =~ λr o(1- 4α2 DA), where λr o is the reorganizational energy corresponding to no mixing between the two electron transfer states and αDA = (HDA/EDA) is the mixing coefficient. Both the solvent and molecular contributions to λr are attenuated. The MLCT excited state lifetimes also decrease with am(m)ine substitution, and the non-radiative decay rate constant at 77 K is roughly proportional to the number of am(m)ine moieties coordinated to the ruthenium center.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Oct 13, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off