Some Reynolds number effects on two- and three-dimensional turbulent boundary layers

Some Reynolds number effects on two- and three-dimensional turbulent boundary layers Experimental data for a two-dimensional (2-D) turbulent boundary layer (TBL) flow and a three-dimensional (3-D) pressure-driven TBL flow outside of a wing/body junction were obtained for an approach Reynolds number based on momentum thickness of Re θ =23,200. The wing shape had a 3:2 elliptical nose, NACA 0020 profiled tail, and was mounted on a flat wall. Some Reynolds number effects are examined using fine spatial resolution (Δy +=1.8) three-velocity-component laser-Doppler velocimeter measurements of mean velocities and Reynolds stresses at nine stations for Re θ =23,200 and previously reported data for a much thinner boundary layer at Re θ =5,940 for the same wing shape. In the 3-D boundary layers, while the stress profiles vary considerably along the flow due to deceleration, acceleration, and skewing, profiles of the parameter correlate well and over available Reynolds numbers. The measured static pressure variations on the flat wall are similar for the two Reynolds numbers, so the vorticity flux and the measured mean velocities scaled on wall variables agree closely near the wall. The stresses vary similarly for both cases, but with higher values in the outer region of the higher Re θ case. The outer layer turbulence in the thicker high Reynolds number case behaves similarly to a rapid distortion of the flow, since stream-wise vortical effects from the wall have not diffused completely through the boundary layer at all measurement stations. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Some Reynolds number effects on two- and three-dimensional turbulent boundary layers

Loading next page...
 
/lp/springer_journal/some-reynolds-number-effects-on-two-and-three-dimensional-turbulent-2vUaJrGIzb
Publisher
Springer-Verlag
Copyright
Copyright © 2001 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s003480100276
Publisher site
See Article on Publisher Site

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial