Some Randomized Algorithms for Convex Quadratic Programming

Some Randomized Algorithms for Convex Quadratic Programming We adapt some randomized algorithms of Clarkson [3] for linear programming to the framework of so-called LP-type problems, which was introduced by Sharir and Welzl [10]. This framework is quite general and allows a unified and elegant presentation and analysis. We also show that LP-type problems include minimization of a convex quadratic function subject to convex quadratic constraints as a special case, for which the algorithms can be implemented efficiently, if only linear constraints are present. We show that the expected running times depend only linearly on the number of constraints, and illustrate this by some numerical results. Even though the framework of LP-type problems may appear rather abstract at first, application of the methods considered in this paper to a given problem of that type is easy and efficient. Moreover, our proofs are in fact rather simple, since many technical details of more explicit problem representations are handled in a uniform manner by our approach. In particular, we do not assume boundedness of the feasible set as required in related methods. Applied Mathematics and Optimization Springer Journals

Some Randomized Algorithms for Convex Quadratic Programming

Loading next page...
Copyright © Inc. by 1999 Springer-Verlag New York
Mathematics; Calculus of Variations and Optimal Control; Optimization; Systems Theory, Control; Theoretical, Mathematical and Computational Physics; Mathematical Methods in Physics; Numerical and Computational Physics, Simulation
Publisher site
See Article on Publisher Site

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial