Some Open Problems and Conjectures Associated with the Invariant Subspace Problem

Some Open Problems and Conjectures Associated with the Invariant Subspace Problem There is a subtle difference as far as the invariant subspace problem is concerned for operators acting on real Banach spaces and operators acting on complex Banach spaces. For instance, the classical hyperinvariant subspace theorem of Lomonosov [Funktsional. Anal. nal. i Prilozhen 7(3)(1973), 55–56. (Russian)], while true for complex Banach spaces is false for real Banach spaces. When one starts with a bounded operator on a real Banach space and then considers some “complexification technique” to extend the operator to a complex Banach space, there seems to be no pattern that indicates any connection between the invariant subspaces of the “real” operator and those of its “complexifications.” The purpose of this note is to examine two complexification methods of an operator T acting on a real Banach space and present some questions regarding the invariant subspaces of T and those of its complexifications http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Positivity Springer Journals

Some Open Problems and Conjectures Associated with the Invariant Subspace Problem

Loading next page...
 
/lp/springer_journal/some-open-problems-and-conjectures-associated-with-the-invariant-jqFz8wcu5d
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2005 by Springer
Subject
Mathematics; Fourier Analysis; Operator Theory; Potential Theory; Calculus of Variations and Optimal Control; Optimization; Econometrics
ISSN
1385-1292
eISSN
1572-9281
D.O.I.
10.1007/s11117-004-3786-9
Publisher site
See Article on Publisher Site

Abstract

There is a subtle difference as far as the invariant subspace problem is concerned for operators acting on real Banach spaces and operators acting on complex Banach spaces. For instance, the classical hyperinvariant subspace theorem of Lomonosov [Funktsional. Anal. nal. i Prilozhen 7(3)(1973), 55–56. (Russian)], while true for complex Banach spaces is false for real Banach spaces. When one starts with a bounded operator on a real Banach space and then considers some “complexification technique” to extend the operator to a complex Banach space, there seems to be no pattern that indicates any connection between the invariant subspaces of the “real” operator and those of its “complexifications.” The purpose of this note is to examine two complexification methods of an operator T acting on a real Banach space and present some questions regarding the invariant subspaces of T and those of its complexifications

Journal

PositivitySpringer Journals

Published: Sep 8, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off