Some Computer Assisted Proofs for Solutions of the Heat Convection Problems

Some Computer Assisted Proofs for Solutions of the Heat Convection Problems This is a continuation of our previous results (Y. Watanabe, N. Yamamoto, T. Nakao, and T. Nishida, “A Numerical Verification of Nontrivial Solutions for the Heat Convection Problem,” to appear in the Journal of Mathematical Fluid Mechanics). In that work, the authors considered two-dimensional Rayleigh-Bénard convection and proposed an approach to prove existence of steady-state solutions based on an infinite dimensional fixed-point theorem using a Newton-like operator with spectral approximation and constructive error estimates. We numerically verified several exact nontrivial solutions which correspond to solutions bifurcating from the trivial solution. This paper shows more detailed results of verification for given Prandtl and Rayleigh numbers. In particular, we found a new and interesting solution branch which was not obtained in the previous study, and it should enable us to present important information to clarify the global bifurcation structure. All numerical examples discussed are take into account of the effects of rounding errors in the floating point computations. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Reliable Computing Springer Journals

Some Computer Assisted Proofs for Solutions of the Heat Convection Problems

Loading next page...
 
/lp/springer_journal/some-computer-assisted-proofs-for-solutions-of-the-heat-convection-hRDq0PkFiO
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2003 by Kluwer Academic Publishers
Subject
Mathematics; Numeric Computing; Approximations and Expansions; Computational Mathematics and Numerical Analysis; Mathematical Modeling and Industrial Mathematics
ISSN
1385-3139
eISSN
1573-1340
D.O.I.
10.1023/A:1025179130399
Publisher site
See Article on Publisher Site

Abstract

This is a continuation of our previous results (Y. Watanabe, N. Yamamoto, T. Nakao, and T. Nishida, “A Numerical Verification of Nontrivial Solutions for the Heat Convection Problem,” to appear in the Journal of Mathematical Fluid Mechanics). In that work, the authors considered two-dimensional Rayleigh-Bénard convection and proposed an approach to prove existence of steady-state solutions based on an infinite dimensional fixed-point theorem using a Newton-like operator with spectral approximation and constructive error estimates. We numerically verified several exact nontrivial solutions which correspond to solutions bifurcating from the trivial solution. This paper shows more detailed results of verification for given Prandtl and Rayleigh numbers. In particular, we found a new and interesting solution branch which was not obtained in the previous study, and it should enable us to present important information to clarify the global bifurcation structure. All numerical examples discussed are take into account of the effects of rounding errors in the floating point computations.

Journal

Reliable ComputingSpringer Journals

Published: Oct 4, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off