Somatic Gene Transfer of Tagged K+ Channel Fragments to Probe Trafficking and Electrical Function in Epithelial Cells and Cardiac Myocytes

Somatic Gene Transfer of Tagged K+ Channel Fragments to Probe Trafficking and Electrical Function... To evaluate the roles of the C-termini of K + channels in subcellular targeting and protein-protein interactions, we created fusion constructs of the cell-surface antigen CD8 and the C-termini of Kv4.3, Kv1.4 and KvLQT1. Using a Cre-lox recombination system, we made 3 adenoviruses containing a fusion of the N-terminal-and transmembrane segments of CD8 with the C-termini of each of the 3 K + channels. Expression in polarized Opossum Kidney (OK) epithelial cells led to localization of CD8-Kv4.3 and CD8-Kv1.4 into the apical and basolateral membranes, while CD8-KvLQT1 remained in the endoplasmic reticulum (ER), even when co-expressed with MinK. When expressed in rat cardiac myocytes in culture, all the 3 constructs were diffusely targeted to the surface membrane. The ER retention of CD8-KvLQT1 in OK cells but not in cardiomyocytes thus reveals functional differences in trafficking between these two cell types. To probe functional roles of C-termini, we studied K + currents in cardiac myocytes expressing CD8-Kv4.3. Patch-clamp recordings of transient outward current revealed a hyperpolarizing shift of steady-state inactivation, implying that CD8-Kv4.3 may be disrupting the interaction of Kv4.x channels with one or more as-yet-undefined regulatory subunits. Thus, expression of tagged ion-channel fragments represents a novel, generalizable approach that may help to elucidate assembly, localization and function of these important signaling proteins. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Somatic Gene Transfer of Tagged K+ Channel Fragments to Probe Trafficking and Electrical Function in Epithelial Cells and Cardiac Myocytes

Loading next page...
 
/lp/springer_journal/somatic-gene-transfer-of-tagged-k-channel-fragments-to-probe-813Q0VTOik
Publisher
Springer-Verlag
Copyright
Copyright © 2002 by Springer-Verlag New York Inc.
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-002-1033-5
Publisher site
See Article on Publisher Site

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial