Solving the data sparsity problem in destination prediction

Solving the data sparsity problem in destination prediction Destination prediction is an essential task for many emerging location-based applications such as recommending sightseeing places and targeted advertising according to destinations. A common approach to destination prediction is to derive the probability of a location being the destination based on historical trajectories. However, almost all the existing techniques use various kinds of extra information such as road network, proprietary travel planner, statistics requested from government, and personal driving habits. Such extra information, in most circumstances, is unavailable or very costly to obtain. Thereby we approach the task of destination prediction by using only historical trajectory dataset. However, this approach encounters the “data sparsity problem”, i.e., the available historical trajectories are far from enough to cover all possible query trajectories, which considerably limits the number of query trajectories that can obtain predicted destinations. We propose a novel method named Sub-Trajectory Synthesis (SubSyn) to address the data sparsity problem. SubSyn first decomposes historical trajectories into sub-trajectories comprising two adjacent locations, and then connects the sub-trajectories into “synthesised” trajectories. This process effectively expands the historical trajectory dataset to contain much more trajectories. Experiments based on real datasets show that SubSyn can predict destinations for up to ten times more query trajectories than a baseline prediction algorithm. Furthermore, the running time of the SubSyn-training algorithm is almost negligible for a large set of 1.9 million trajectories, and the SubSyn-prediction algorithm runs over two orders of magnitude faster than the baseline prediction algorithm constantly. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals

Solving the data sparsity problem in destination prediction

Loading next page...
 
/lp/springer_journal/solving-the-data-sparsity-problem-in-destination-prediction-uX0QVgJMwO
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2015 by Springer-Verlag Berlin Heidelberg
Subject
Computer Science; Database Management
ISSN
1066-8888
eISSN
0949-877X
D.O.I.
10.1007/s00778-014-0369-7
Publisher site
See Article on Publisher Site

Abstract

Destination prediction is an essential task for many emerging location-based applications such as recommending sightseeing places and targeted advertising according to destinations. A common approach to destination prediction is to derive the probability of a location being the destination based on historical trajectories. However, almost all the existing techniques use various kinds of extra information such as road network, proprietary travel planner, statistics requested from government, and personal driving habits. Such extra information, in most circumstances, is unavailable or very costly to obtain. Thereby we approach the task of destination prediction by using only historical trajectory dataset. However, this approach encounters the “data sparsity problem”, i.e., the available historical trajectories are far from enough to cover all possible query trajectories, which considerably limits the number of query trajectories that can obtain predicted destinations. We propose a novel method named Sub-Trajectory Synthesis (SubSyn) to address the data sparsity problem. SubSyn first decomposes historical trajectories into sub-trajectories comprising two adjacent locations, and then connects the sub-trajectories into “synthesised” trajectories. This process effectively expands the historical trajectory dataset to contain much more trajectories. Experiments based on real datasets show that SubSyn can predict destinations for up to ten times more query trajectories than a baseline prediction algorithm. Furthermore, the running time of the SubSyn-training algorithm is almost negligible for a large set of 1.9 million trajectories, and the SubSyn-prediction algorithm runs over two orders of magnitude faster than the baseline prediction algorithm constantly.

Journal

The VLDB JournalSpringer Journals

Published: Apr 1, 2015

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off