Solving Fractional Multicriteria Optimization Problems with Sum of Squares Convex Polynomial Data

Solving Fractional Multicriteria Optimization Problems with Sum of Squares Convex Polynomial Data This paper focuses on the study of finding efficient solutions in fractional multicriteria optimization problems with sum of squares convex polynomial data. We first relax the fractional multicriteria optimization problems to fractional scalar ones. Then, using the parametric approach, we transform the fractional scalar problems into non-fractional problems. Consequently, we prove that, under a suitable regularity condition, the optimal solution of each non-fractional scalar problem can be found by solving its associated single semidefinite programming problem. Finally, we show that finding efficient solutions in the fractional multicriteria optimization problems is tractable by employing the epsilon constraint method. In particular, if the denominators of each component of the objective functions are same, then we observe that efficient solutions in such a problem can be effectively found by using the hybrid method. Some numerical examples are given to illustrate our results. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Optimization Theory and Applications Springer Journals

Solving Fractional Multicriteria Optimization Problems with Sum of Squares Convex Polynomial Data

Loading next page...
 
/lp/springer_journal/solving-fractional-multicriteria-optimization-problems-with-sum-of-y8Z5WqJR90
Publisher
Springer US
Copyright
Copyright © 2018 by Springer Science+Business Media, LLC, part of Springer Nature
Subject
Mathematics; Calculus of Variations and Optimal Control; Optimization; Optimization; Theory of Computation; Applications of Mathematics; Engineering, general; Operations Research/Decision Theory
ISSN
0022-3239
eISSN
1573-2878
D.O.I.
10.1007/s10957-018-1222-8
Publisher site
See Article on Publisher Site

Abstract

This paper focuses on the study of finding efficient solutions in fractional multicriteria optimization problems with sum of squares convex polynomial data. We first relax the fractional multicriteria optimization problems to fractional scalar ones. Then, using the parametric approach, we transform the fractional scalar problems into non-fractional problems. Consequently, we prove that, under a suitable regularity condition, the optimal solution of each non-fractional scalar problem can be found by solving its associated single semidefinite programming problem. Finally, we show that finding efficient solutions in the fractional multicriteria optimization problems is tractable by employing the epsilon constraint method. In particular, if the denominators of each component of the objective functions are same, then we observe that efficient solutions in such a problem can be effectively found by using the hybrid method. Some numerical examples are given to illustrate our results.

Journal

Journal of Optimization Theory and ApplicationsSpringer Journals

Published: Jan 23, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off