Solving complex multi-UAV mission planning problems using multi-objective genetic algorithms

Solving complex multi-UAV mission planning problems using multi-objective genetic algorithms Due to recent booming of unmanned air vehicles (UAVs) technologies, these are being used in many fields involving complex tasks. Some of them involve a high risk to the vehicle driver, such as fire monitoring and rescue tasks, which make UAVs excellent for avoiding human risks. Mission planning for UAVs is the process of planning the locations and actions (loading/dropping a load, taking videos/pictures, acquiring information) for the vehicles, typically over a time period. These vehicles are controlled from ground control stations (GCSs) where human operators use rudimentary systems. This paper presents a new multi-objective genetic algorithm for solving complex mission planning problems involving a team of UAVs and a set of GCSs. A hybrid fitness function has been designed using a constraint satisfaction problem to check whether solutions are valid and Pareto-based measures to look for optimal solutions. The algorithm has been tested on several datasets, optimizing different variables of the mission, such as the makespan, the fuel consumption, and distance. Experimental results show that the new algorithm is able to obtain good solutions; however, as the problem becomes more complex, the optimal solutions also become harder to find. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Soft Computing Springer Journals

Solving complex multi-UAV mission planning problems using multi-objective genetic algorithms

Loading next page...
 
/lp/springer_journal/solving-complex-multi-uav-mission-planning-problems-using-multi-1vuKH0tfmy
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2016 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Computational Intelligence; Artificial Intelligence (incl. Robotics); Mathematical Logic and Foundations; Control, Robotics, Mechatronics
ISSN
1432-7643
eISSN
1433-7479
D.O.I.
10.1007/s00500-016-2376-7
Publisher site
See Article on Publisher Site

Abstract

Due to recent booming of unmanned air vehicles (UAVs) technologies, these are being used in many fields involving complex tasks. Some of them involve a high risk to the vehicle driver, such as fire monitoring and rescue tasks, which make UAVs excellent for avoiding human risks. Mission planning for UAVs is the process of planning the locations and actions (loading/dropping a load, taking videos/pictures, acquiring information) for the vehicles, typically over a time period. These vehicles are controlled from ground control stations (GCSs) where human operators use rudimentary systems. This paper presents a new multi-objective genetic algorithm for solving complex mission planning problems involving a team of UAVs and a set of GCSs. A hybrid fitness function has been designed using a constraint satisfaction problem to check whether solutions are valid and Pareto-based measures to look for optimal solutions. The algorithm has been tested on several datasets, optimizing different variables of the mission, such as the makespan, the fuel consumption, and distance. Experimental results show that the new algorithm is able to obtain good solutions; however, as the problem becomes more complex, the optimal solutions also become harder to find.

Journal

Soft ComputingSpringer Journals

Published: Oct 3, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off