Solid-state metal hydride secondary batteries using heteropolyacid hydrate as an electrolyte

Solid-state metal hydride secondary batteries using heteropolyacid hydrate as an electrolyte In order to enhance the performance of a solid-state MnO2-metal hydride battery using H3PMo12O40 · 20H2O as an electrolyte, a moderate amount of the electrolyte was added to both positive and negative electrodes. The high rate characteristics of the battery were improved significantly by optimizing the electrolyte content in the electrodes; the resulting battery was able to operate over 140 cycles, even at a current density of 20 mA/g alloy, which is large enough for the batteries using inorganic solid electrolytes, and keep the discharge efficiency about 90%. The improvement of battery performance appears to be caused by an increase in electrode-electrolyte interface area. The AC impedance analyses revealed that the resistance of interface is decreased by the addition of a suitable amount of the electrolyte, suggesting an increase in the interface area. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Solid-state metal hydride secondary batteries using heteropolyacid hydrate as an electrolyte

Loading next page...
 
/lp/springer_journal/solid-state-metal-hydride-secondary-batteries-using-heteropolyacid-wCAc2gAYPt
Publisher
Brill Academic Publishers
Copyright
Copyright © 2006 by VSP
Subject
Chemistry; Inorganic Chemistry; Physical Chemistry; Catalysis
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1163/156856706777973817
Publisher site
See Article on Publisher Site

Abstract

In order to enhance the performance of a solid-state MnO2-metal hydride battery using H3PMo12O40 · 20H2O as an electrolyte, a moderate amount of the electrolyte was added to both positive and negative electrodes. The high rate characteristics of the battery were improved significantly by optimizing the electrolyte content in the electrodes; the resulting battery was able to operate over 140 cycles, even at a current density of 20 mA/g alloy, which is large enough for the batteries using inorganic solid electrolytes, and keep the discharge efficiency about 90%. The improvement of battery performance appears to be caused by an increase in electrode-electrolyte interface area. The AC impedance analyses revealed that the resistance of interface is decreased by the addition of a suitable amount of the electrolyte, suggesting an increase in the interface area.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Jan 1, 2006

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial