Access the full text.
Sign up today, get DeepDyve free for 14 days.
This paper presents first investigations on solid and strongly acid electrolytes for Al-air batteries. These electrolytes are prepared starting from a “green” polysaccharide (xanthan gum) and HCl solutions (between 4 and 24 wt%). The gelling capability of xanthan is used to obtain real solid products characterized by ionic conductivities of practical interest (10−2 S cm−1) in electrochemical cells. The adsorption properties of xanthan on metal Al are exploited to control anode self-corrosion and realize Al-air cells with very high anodic efficiencies (> 80%). The behavior of Al-air cells is studied utilizing the weight loss technique, electrochemical impedance spectroscopy, potentiodynamic polarization curves, scanning electron microscopy coupled to energy-dispersive spectroscopy, and discharge tests at constant current (1–5 mA) with Pt/C-based air cathodes. The best overall performance is observed with electrolytes prepared starting from HCl at 24% and gel solid/liquid ratio of 1.40 g ml−1. The hydrogels obtained in this work permit for the first time the operation of an Al-air galvanic cell based on solid and strongly acid electrolytes with high anodic efficiency and limited dendrite formation.
Journal of Solid State Electrochemistry – Springer Journals
Published: Jun 2, 2018
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.