Solar-induced generation of singlet oxygen and hydroxyl radical in sewage wastewaters

Solar-induced generation of singlet oxygen and hydroxyl radical in sewage wastewaters Singlet oxygen (1O2) and hydroxyl radical (·OH) play an important role in the degradation of pollutants in surface waters. However, the mechanism underlying the photochemical generation of 1O2 and ·OH in wastewaters is poorly known. Here we studied the photo-induced generation of 1O2 and ·OH in different sewage treatment plant units. The correlation between the generation of 1O2 and ·OH and the water constituents was discussed. Our results show that in sewage units the 1O2 formation rate ranges from 2.19 × 10−8 to 6.74 × 10−8 mol L−1 s−1, and the ·OH formation rate ranges from 1.7 × 10−11 to 3.06 × 10−10 mol L−1 s−1. The average 1O2 formation rates in the various sewage units are similar to those in wetland and estuarine waters containing rich dissolved organic matter and 2–4 times higher than those in lake and seawater samples. The average ·OH formation rates of the sewage units are 5–50 times higher than for other water samples reported. The ·OH generation rate increased with the iron content with a correlation coefficient of 0.85, which indicates that the photo-Fenton reaction plays a dominant role in ·OH generation in sewage wastewater. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Environmental Chemistry Letters Springer Journals

Solar-induced generation of singlet oxygen and hydroxyl radical in sewage wastewaters

Loading next page...
 
/lp/springer_journal/solar-induced-generation-of-singlet-oxygen-and-hydroxyl-radical-in-X1c0fESgxH
Publisher
Springer International Publishing
Copyright
Copyright © 2017 by Springer International Publishing Switzerland
Subject
Environment; Environmental Chemistry; Ecotoxicology; Pollution, general; Analytical Chemistry; Geochemistry
ISSN
1610-3653
eISSN
1610-3661
D.O.I.
10.1007/s10311-017-0625-3
Publisher site
See Article on Publisher Site

Abstract

Singlet oxygen (1O2) and hydroxyl radical (·OH) play an important role in the degradation of pollutants in surface waters. However, the mechanism underlying the photochemical generation of 1O2 and ·OH in wastewaters is poorly known. Here we studied the photo-induced generation of 1O2 and ·OH in different sewage treatment plant units. The correlation between the generation of 1O2 and ·OH and the water constituents was discussed. Our results show that in sewage units the 1O2 formation rate ranges from 2.19 × 10−8 to 6.74 × 10−8 mol L−1 s−1, and the ·OH formation rate ranges from 1.7 × 10−11 to 3.06 × 10−10 mol L−1 s−1. The average 1O2 formation rates in the various sewage units are similar to those in wetland and estuarine waters containing rich dissolved organic matter and 2–4 times higher than those in lake and seawater samples. The average ·OH formation rates of the sewage units are 5–50 times higher than for other water samples reported. The ·OH generation rate increased with the iron content with a correlation coefficient of 0.85, which indicates that the photo-Fenton reaction plays a dominant role in ·OH generation in sewage wastewater.

Journal

Environmental Chemistry LettersSpringer Journals

Published: Apr 3, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off