Sol–gel synthesis and photocatalytic performance of ZnO toward oxidation reaction of NO

Sol–gel synthesis and photocatalytic performance of ZnO toward oxidation reaction of NO ZnO oxide was prepared by different routes of synthesis such as precipitation, solvothermal, solvothermal assisted with polyethylene glycol and the sol–gel method. The physical properties of the oxides were studied by X-ray powder diffraction, scanning electron microscopy, UV–Vis diffuse reflectance spectroscopy and adsorption–desorption N2 isotherms. The photocatalytic activity of ZnO samples was evaluated in the oxidation reaction of nitric oxide (NO). The conversion degree of NO reached by each sample used as photocatalyst was associated with their physical properties. By far the best performance was obtained with the sample prepared by sol–gel, in which a degree of conversion of about 70 % was reached. Beyond the elimination of NO, the selective formation of innocuous nitrate ions as the main product of reaction (>80 %) was also confirmed. The effect of the relative humidity and the charge of photocatalyst in the conversion degree of NO was analyzed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Sol–gel synthesis and photocatalytic performance of ZnO toward oxidation reaction of NO

Loading next page...
 
/lp/springer_journal/sol-gel-synthesis-and-photocatalytic-performance-of-zno-toward-1DvFla6xvZ
Publisher
Springer Netherlands
Copyright
Copyright © 2015 by Springer Science+Business Media Dordrecht
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-015-2327-4
Publisher site
See Article on Publisher Site

Abstract

ZnO oxide was prepared by different routes of synthesis such as precipitation, solvothermal, solvothermal assisted with polyethylene glycol and the sol–gel method. The physical properties of the oxides were studied by X-ray powder diffraction, scanning electron microscopy, UV–Vis diffuse reflectance spectroscopy and adsorption–desorption N2 isotherms. The photocatalytic activity of ZnO samples was evaluated in the oxidation reaction of nitric oxide (NO). The conversion degree of NO reached by each sample used as photocatalyst was associated with their physical properties. By far the best performance was obtained with the sample prepared by sol–gel, in which a degree of conversion of about 70 % was reached. Beyond the elimination of NO, the selective formation of innocuous nitrate ions as the main product of reaction (>80 %) was also confirmed. The effect of the relative humidity and the charge of photocatalyst in the conversion degree of NO was analyzed.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Oct 27, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off