Soil Test, Aerial Image and Yield Data as Inputs for Site-specific Fertility and Hybrid Management Under Maize

Soil Test, Aerial Image and Yield Data as Inputs for Site-specific Fertility and Hybrid... Several potential sources of information exist to support precision management of crop inputs. This study evaluated soil test data, bare-soil remote sensing imagery and yield monitor information for their potential contributions to precision management of maize (Zea mays L.). Data were collected from five farmer-managed fields in Central New York in 1999, 2000, and 2001. Geostatistical techniques were used to analyze the spatial structure of soil fertility (pH, P, K, NO3 and organic matter content) and yield variables (yield, hybrid response and N fertilization response), while remote sensing imagery was processed using principal component analysis. Geographic information system (GIS) spatial data processing and correlation analyses were used to evaluate relationships in the data. Organic matter content, pH, P, and K were highly consistent over time and showed high to moderate levels of spatial autocorrelation, suggesting that grid soil sampling at 2.5–5.5 ha scale may be used as a basis for defining fertility management zones. Soil nitrate levels were strongly influenced by seasonal weather conditions and showed low potential for site-specific N management. Aerial image data were correlated to soil organic matter content and in some cases to yield, mainly through the effect of drainage patterns. Aerial image data were not well correlated with soil fertility indicators, and therefore were not useful for defining fertility management zones. Yield response to hybrid selection and nitrogen fertilization rates were highly variable among years, and showed little justification for site-specific management. In conclusion, we recommend grid-based management of lime, P, and K, but no justification existed within our limited study area for site-specific N or hybrid management. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Precision Agriculture Springer Journals

Soil Test, Aerial Image and Yield Data as Inputs for Site-specific Fertility and Hybrid Management Under Maize

Loading next page...
 
/lp/springer_journal/soil-test-aerial-image-and-yield-data-as-inputs-for-site-specific-bo8CEP7rji
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2005 by Springer Science+Business Media, Inc.
Subject
Life Sciences; Agriculture; Soil Science & Conservation; Remote Sensing/Photogrammetry; Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences; Atmospheric Sciences
ISSN
1385-2256
eISSN
1573-1618
D.O.I.
10.1007/s11119-004-0687-7
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial