Soil organic carbon partitioning and Δ14C variation in desert and conifer ecosystems of southern Arizona

Soil organic carbon partitioning and Δ14C variation in desert and conifer ecosystems of southern... Soils are significant terrestrial carbon stores yet the mechanisms that stabilize organic carbon in mineral soil remain poorly constrained. Here, we identified climate and topographic controls on soil organic carbon storage along the Catalina Critical Zone Observatory that spans a significant range in mean annual temperature (>10 °C) and mean annual precipitation (>50 cm year−1). Granitic soils were collected from divergent summit and convergent footslope positions in desert scrub, pine, and mixed conifer systems. Physical soil carbon distribution was quantified using a density and sonication technique to obtain the “free,” “occluded,” and heavy “mineral” soil carbon pools. We examined bulk soil (<2 mm) and density fractions using total carbon (%), stable isotopic composition (δ13C), and radiocarbon analyses (Δ14C). Desert scrub soils stored minimal soil carbon (<1% by weight) that was partitioned to the heavy mineral pool. Surprisingly, we identified depleted ∆14C in the bulk soil (−9 to −66‰) and mineral C fractions (−72 to −90‰) from subsurface weathered granite in the desert system. The transition to the productive P. pine ecosystem was met with more soil C (>3%) that partitioned evenly between the free light and mineral fractions. Soil C in the P. pine system also reflected the impact of a moderate severity fire in 2002 that led to modern ∆14C values for bulk soil and density fractions. The mixed conifer system contained a greater proportion of passive occluded C in the subsurface soils. We observed evidence for modern fire inputs into the surface soils of the mixed conifer system in combination with buried charcoal and occluded C associated with historic fire events. Convergent landscapes contained higher soil carbon stocks and depleted ∆14C relative to adjacent divergent landscapes, suggesting a landscape-level mechanism that includes the transport, burial, and preservation of soil carbon downslope. These data sets provide insights into ecosystem- and hillslope-scale variations in soil carbon storage across semiarid to subhumid environments. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Biogeochemistry Springer Journals

Soil organic carbon partitioning and Δ14C variation in desert and conifer ecosystems of southern Arizona

Loading next page...
 
/lp/springer_journal/soil-organic-carbon-partitioning-and-14c-variation-in-desert-and-NgHxAVUZar
Publisher
Springer International Publishing
Copyright
Copyright © 2017 by Springer International Publishing AG
Subject
Earth Sciences; Biogeosciences; Ecosystems; Environmental Chemistry; Life Sciences, general
ISSN
0168-2563
eISSN
1573-515X
D.O.I.
10.1007/s10533-017-0360-7
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial