Soil nutrient maps of Sub-Saharan Africa: assessment of soil nutrient content at 250 m spatial resolution using machine learning

Soil nutrient maps of Sub-Saharan Africa: assessment of soil nutrient content at 250 m spatial... Spatial predictions of soil macro and micro-nutrient content across Sub-Saharan Africa at 250 m spatial resolution and for 0–30 cm depth interval are presented. Predictions were produced for 15 target nutrients: organic carbon (C) and total (organic) nitrogen (N), total phosphorus (P), and extractable—phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), sulfur (S), sodium (Na), iron (Fe), manganese (Mn), zinc (Zn), copper (Cu), aluminum (Al) and boron (B). Model training was performed using soil samples from ca. 59,000 locations (a compilation of soil samples from the AfSIS, EthioSIS, One Acre Fund, VitalSigns and legacy soil data) and an extensive stack of remote sensing covariates in addition to landform, lithologic and land cover maps. An ensemble model was then created for each nutrient from two machine learning algorithms—random forest and gradient boosting, as implemented in R packages ranger and xgboost—and then used to generate predictions in a fully-optimized computing system. Cross-validation revealed that apart from S, P and B, significant models can be produced for most targeted nutrients (R-square between 40–85%). Further comparison with OFRA field trial database shows that soil nutrients are indeed critical for agricultural development, with Mn, Zn, Al, B and Na, appearing as the most important nutrients for predicting crop yield. A limiting factor for mapping nutrients using the existing point data in Africa appears to be (1) the high spatial clustering of sampling locations, and (2) missing more detailed parent material/geological maps. Logical steps towards improving prediction accuracies include: further collection of input (training) point samples, further harmonization of measurement methods, addition of more detailed covariates specific to Africa, and implementation of a full spatio-temporal statistical modeling framework. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Nutrient Cycling in Agroecosystems Springer Journals

Soil nutrient maps of Sub-Saharan Africa: assessment of soil nutrient content at 250 m spatial resolution using machine learning

Loading next page...
 
/lp/springer_journal/soil-nutrient-maps-of-sub-saharan-africa-assessment-of-soil-nutrient-gTIHUVECRc
Publisher
Springer Netherlands
Copyright
Copyright © 2017 by The Author(s)
Subject
Life Sciences; Agriculture
ISSN
1385-1314
eISSN
1573-0867
D.O.I.
10.1007/s10705-017-9870-x
Publisher site
See Article on Publisher Site

Abstract

Spatial predictions of soil macro and micro-nutrient content across Sub-Saharan Africa at 250 m spatial resolution and for 0–30 cm depth interval are presented. Predictions were produced for 15 target nutrients: organic carbon (C) and total (organic) nitrogen (N), total phosphorus (P), and extractable—phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), sulfur (S), sodium (Na), iron (Fe), manganese (Mn), zinc (Zn), copper (Cu), aluminum (Al) and boron (B). Model training was performed using soil samples from ca. 59,000 locations (a compilation of soil samples from the AfSIS, EthioSIS, One Acre Fund, VitalSigns and legacy soil data) and an extensive stack of remote sensing covariates in addition to landform, lithologic and land cover maps. An ensemble model was then created for each nutrient from two machine learning algorithms—random forest and gradient boosting, as implemented in R packages ranger and xgboost—and then used to generate predictions in a fully-optimized computing system. Cross-validation revealed that apart from S, P and B, significant models can be produced for most targeted nutrients (R-square between 40–85%). Further comparison with OFRA field trial database shows that soil nutrients are indeed critical for agricultural development, with Mn, Zn, Al, B and Na, appearing as the most important nutrients for predicting crop yield. A limiting factor for mapping nutrients using the existing point data in Africa appears to be (1) the high spatial clustering of sampling locations, and (2) missing more detailed parent material/geological maps. Logical steps towards improving prediction accuracies include: further collection of input (training) point samples, further harmonization of measurement methods, addition of more detailed covariates specific to Africa, and implementation of a full spatio-temporal statistical modeling framework.

Journal

Nutrient Cycling in AgroecosystemsSpringer Journals

Published: Aug 2, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off