Soil heterogeneity at the field scale: a challenge for precision crop protection

Soil heterogeneity at the field scale: a challenge for precision crop protection Crop protection seldom takes into account soil heterogeneity at the field scale. Yet, variable site characteristics affect the incidence of pests as well as the efficacy and fate of pesticides in soil. This article reviews crucial starting points for incorporating soil information into precision crop protection (PCP). At present, the lack of adequate field maps is a major drawback. Conventional soil analyses are too expensive to capture soil heterogeneity at the field scale with the required spatial resolution. Therefore, we discuss alternative procedures exemplified by our own results concerning (i) minimally and non-invasive sensor techniques for the estimation of soil properties, (ii) the evidence of soil heterogeneity with respect to PCP, and (iii) current possibilities for incorporation of high resolution soil information into crop protection decisions. Soil organic carbon (SOC) and soil texture are extremely interesting for PCP. Their determination with minimally invasive techniques requires the sampling of soils, because the sensors must be used in the laboratory. However, this technique delivers precise information at low cost. We accurately determined SOC in the near-infrared. In the mid-infrared, texture and lime content were also exactly quantified. Non-invasive sensors require less effort. The airborne HyMap sensor was suitable for the detection of variability in SOC at high resolution, thus promising further progress regarding SOC data acquisition from bare soil. The apparent electrical conductivity as measured by an EM38 sensor was shown to be a suitable proxy for soil texture and layering. A survey of arable fields near Bonn (Germany) revealed widespread within-field heterogeneity of texture-related ECa, SOC and other characteristics. Maps of herbicide sorption and application rate were derived from sensor data, showing that optimal herbicide dosage is strongly governed by soil variability. A phytoassay with isoproturon confirmed the reliability of spatially varied herbicide application rates. Mapping areas with an enhanced leaching risk within fields allows them to be kept free of pesticides with related regulatory restrictions. We conclude that the use of information on soil heterogeneity within the concept of PCP is beneficial, both economically and ecologically. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Precision Agriculture Springer Journals

Soil heterogeneity at the field scale: a challenge for precision crop protection

Loading next page...
 
/lp/springer_journal/soil-heterogeneity-at-the-field-scale-a-challenge-for-precision-crop-Nk6Uqs96rF
Publisher
Springer Journals
Copyright
Copyright © 2008 by Springer Science+Business Media, LLC
Subject
Life Sciences; Agriculture; Soil Science & Conservation; Remote Sensing/Photogrammetry; Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences; Atmospheric Sciences
ISSN
1385-2256
eISSN
1573-1618
D.O.I.
10.1007/s11119-008-9077-x
Publisher site
See Article on Publisher Site

Abstract

Crop protection seldom takes into account soil heterogeneity at the field scale. Yet, variable site characteristics affect the incidence of pests as well as the efficacy and fate of pesticides in soil. This article reviews crucial starting points for incorporating soil information into precision crop protection (PCP). At present, the lack of adequate field maps is a major drawback. Conventional soil analyses are too expensive to capture soil heterogeneity at the field scale with the required spatial resolution. Therefore, we discuss alternative procedures exemplified by our own results concerning (i) minimally and non-invasive sensor techniques for the estimation of soil properties, (ii) the evidence of soil heterogeneity with respect to PCP, and (iii) current possibilities for incorporation of high resolution soil information into crop protection decisions. Soil organic carbon (SOC) and soil texture are extremely interesting for PCP. Their determination with minimally invasive techniques requires the sampling of soils, because the sensors must be used in the laboratory. However, this technique delivers precise information at low cost. We accurately determined SOC in the near-infrared. In the mid-infrared, texture and lime content were also exactly quantified. Non-invasive sensors require less effort. The airborne HyMap sensor was suitable for the detection of variability in SOC at high resolution, thus promising further progress regarding SOC data acquisition from bare soil. The apparent electrical conductivity as measured by an EM38 sensor was shown to be a suitable proxy for soil texture and layering. A survey of arable fields near Bonn (Germany) revealed widespread within-field heterogeneity of texture-related ECa, SOC and other characteristics. Maps of herbicide sorption and application rate were derived from sensor data, showing that optimal herbicide dosage is strongly governed by soil variability. A phytoassay with isoproturon confirmed the reliability of spatially varied herbicide application rates. Mapping areas with an enhanced leaching risk within fields allows them to be kept free of pesticides with related regulatory restrictions. We conclude that the use of information on soil heterogeneity within the concept of PCP is beneficial, both economically and ecologically.

Journal

Precision AgricultureSpringer Journals

Published: Sep 11, 2008

References

  • Soil fertility management and insect pests: Harmonizing soil and plant health in agroecosystems
    Altieri, MA; Nicholls, CI
  • Soil electrical conductivity as a function of soil water content and implications for soil mapping
    Brevik, EC; Fenton, TE; Lazari, A
  • Applications of apparent soil electrical conductivity in precision agriculture
    Corwin, DL; Lesch, SM

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off