Soil-borne seed pathogens: contributors to the naturalization gauntlet in Pacific Northwest (USA) forest and steppe communities?

Soil-borne seed pathogens: contributors to the naturalization gauntlet in Pacific Northwest (USA)... Soil-borne seed pathogens are omnipresent but are often overlooked components of a community’s biotic resistance to plant naturalization and invasion. Using multi-year greenhouse experiments, we compared the seed mortality of single invasive, naturalized, and native grass species in sterilized and unsterilized soils collected from Pacific Northwest (USA) steppe and forest communities. Native Pseudoroegneria spicata displayed the greatest seed mortality, naturalized Secale cereale displayed intermediate seed mortality, and invasive Bromus tectorum was least affected by soil pathogens. Seed mortality across all three species was consistently greater in soils collected from steppe than soils collected from forest; seeds sown into sterilized steppe soil experienced half the overall seed mortality compared to seeds sown into unsterilized steppe soil. Soil sterilization did not affect grass seed mortality in forest soils. We conclude that (1) removing soil-borne pathogens with sterilization does increase native and non-native grass seed survival, and (2) soil-borne pathogens may influence whether an introduced species becomes invasive or naturalized within these Pacific Northwest communities as a result of differential seed survival. Soil-borne pathogens in these communities, however, have the greatest negative effect on the survival of native grass seeds, suggesting that the native microbial soil flora more effectively attack seeds of native plants than seeds of non-native species. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Ecology Springer Journals

Soil-borne seed pathogens: contributors to the naturalization gauntlet in Pacific Northwest (USA) forest and steppe communities?

Loading next page...
 
/lp/springer_journal/soil-borne-seed-pathogens-contributors-to-the-naturalization-gauntlet-ND7dqS2laG
Publisher
Springer Netherlands
Copyright
Copyright © 2018 by Springer Science+Business Media B.V., part of Springer Nature
Subject
Life Sciences; Ecology; Plant Ecology; Community & Population Ecology; Terrestial Ecology; Applied Ecology; Biodiversity
ISSN
1385-0237
eISSN
1573-5052
D.O.I.
10.1007/s11258-018-0800-z
Publisher site
See Article on Publisher Site

Abstract

Soil-borne seed pathogens are omnipresent but are often overlooked components of a community’s biotic resistance to plant naturalization and invasion. Using multi-year greenhouse experiments, we compared the seed mortality of single invasive, naturalized, and native grass species in sterilized and unsterilized soils collected from Pacific Northwest (USA) steppe and forest communities. Native Pseudoroegneria spicata displayed the greatest seed mortality, naturalized Secale cereale displayed intermediate seed mortality, and invasive Bromus tectorum was least affected by soil pathogens. Seed mortality across all three species was consistently greater in soils collected from steppe than soils collected from forest; seeds sown into sterilized steppe soil experienced half the overall seed mortality compared to seeds sown into unsterilized steppe soil. Soil sterilization did not affect grass seed mortality in forest soils. We conclude that (1) removing soil-borne pathogens with sterilization does increase native and non-native grass seed survival, and (2) soil-borne pathogens may influence whether an introduced species becomes invasive or naturalized within these Pacific Northwest communities as a result of differential seed survival. Soil-borne pathogens in these communities, however, have the greatest negative effect on the survival of native grass seeds, suggesting that the native microbial soil flora more effectively attack seeds of native plants than seeds of non-native species.

Journal

Plant EcologySpringer Journals

Published: Jan 19, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial