Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Soil-borne seed pathogens: contributors to the naturalization gauntlet in Pacific Northwest (USA) forest and steppe communities?

Soil-borne seed pathogens: contributors to the naturalization gauntlet in Pacific Northwest (USA)... Soil-borne seed pathogens are omnipresent but are often overlooked components of a community’s biotic resistance to plant naturalization and invasion. Using multi-year greenhouse experiments, we compared the seed mortality of single invasive, naturalized, and native grass species in sterilized and unsterilized soils collected from Pacific Northwest (USA) steppe and forest communities. Native Pseudoroegneria spicata displayed the greatest seed mortality, naturalized Secale cereale displayed intermediate seed mortality, and invasive Bromus tectorum was least affected by soil pathogens. Seed mortality across all three species was consistently greater in soils collected from steppe than soils collected from forest; seeds sown into sterilized steppe soil experienced half the overall seed mortality compared to seeds sown into unsterilized steppe soil. Soil sterilization did not affect grass seed mortality in forest soils. We conclude that (1) removing soil-borne pathogens with sterilization does increase native and non-native grass seed survival, and (2) soil-borne pathogens may influence whether an introduced species becomes invasive or naturalized within these Pacific Northwest communities as a result of differential seed survival. Soil-borne pathogens in these communities, however, have the greatest negative effect on the survival of native grass seeds, suggesting that the native microbial soil flora more effectively attack seeds of native plants than seeds of non-native species. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Ecology Springer Journals

Soil-borne seed pathogens: contributors to the naturalization gauntlet in Pacific Northwest (USA) forest and steppe communities?

Plant Ecology , Volume 219 (4) – Jan 19, 2018

Loading next page...
 
/lp/springer_journal/soil-borne-seed-pathogens-contributors-to-the-naturalization-gauntlet-ND7dqS2laG

References (67)

Publisher
Springer Journals
Copyright
Copyright © 2018 by Springer Science+Business Media B.V., part of Springer Nature
Subject
Life Sciences; Ecology; Plant Ecology; Community & Population Ecology; Terrestial Ecology; Applied Ecology; Biodiversity
ISSN
1385-0237
eISSN
1573-5052
DOI
10.1007/s11258-018-0800-z
Publisher site
See Article on Publisher Site

Abstract

Soil-borne seed pathogens are omnipresent but are often overlooked components of a community’s biotic resistance to plant naturalization and invasion. Using multi-year greenhouse experiments, we compared the seed mortality of single invasive, naturalized, and native grass species in sterilized and unsterilized soils collected from Pacific Northwest (USA) steppe and forest communities. Native Pseudoroegneria spicata displayed the greatest seed mortality, naturalized Secale cereale displayed intermediate seed mortality, and invasive Bromus tectorum was least affected by soil pathogens. Seed mortality across all three species was consistently greater in soils collected from steppe than soils collected from forest; seeds sown into sterilized steppe soil experienced half the overall seed mortality compared to seeds sown into unsterilized steppe soil. Soil sterilization did not affect grass seed mortality in forest soils. We conclude that (1) removing soil-borne pathogens with sterilization does increase native and non-native grass seed survival, and (2) soil-borne pathogens may influence whether an introduced species becomes invasive or naturalized within these Pacific Northwest communities as a result of differential seed survival. Soil-borne pathogens in these communities, however, have the greatest negative effect on the survival of native grass seeds, suggesting that the native microbial soil flora more effectively attack seeds of native plants than seeds of non-native species.

Journal

Plant EcologySpringer Journals

Published: Jan 19, 2018

There are no references for this article.