Soil attributes and leaf nitrogen estimating sugar cane quality parameters: Brix, pol and fibre

Soil attributes and leaf nitrogen estimating sugar cane quality parameters: Brix, pol and fibre The area of sugar cane production in Brazil has substantially increased in the last few years due to the high demand for ethanol. It is estimated that the actual area, which is approximately 8 Mha, will increase to as much as 15 Mha in the next 10 years. In addition to enlarging the boundaries and installing new industrial units, sugar cane expansion demands better use of production areas and improvement of both yield and quality, combined with a reduction of production costs. Thus, models that can describe the behaviour of sugar cane quality parameters could be important in understanding the effects of soil and plant attributes on these parameters. The objective of this work was to fit mathematical models to the sugar cane Brix, pol and fibre parameters using physical soil attributes, chemical soil attributes and leaf nitrogen as predictors from the previous year. This work was carried out in an area of 10 ha located in Araras, SP, Brazil, from November 2008 until July 2011 in the first (plant cane), second (first ratoon) and third (second ratoon) cycles of the crop. The chemical soil attributes analysed were the macronutrients and micronutrients, and the soil physical attribute analysed was the soil texture. The variables used in the models were chosen using principal component analysis (PCA), and the fit of the models was made as the mean of multiple regressions. The results were compared using kriging to map the Brix, pol and fibre with the true and estimated values. The Brix, pol and fibre models presented R 2 values of 0.17, 0.06 and 0.18, respectively, for the first ratoon of the crop and 0.23, 0.19 and 0.52, respectively, for the second ratoon. These results allowed the estimation of Brix, pol and fibre with estimation errors less than 1 % for the first and second ratoons. The PCA approach identified soil organic matter, phosphorus and potassium as the soil attributes that had the higher variance of the dataset during the years studied. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Precision Agriculture Springer Journals

Soil attributes and leaf nitrogen estimating sugar cane quality parameters: Brix, pol and fibre

Loading next page...
 
/lp/springer_journal/soil-attributes-and-leaf-nitrogen-estimating-sugar-cane-quality-vQ9KJZcYrr
Publisher
Springer US
Copyright
Copyright © 2012 by Springer Science+Business Media New York
Subject
Life Sciences; Agriculture; Soil Science & Conservation; Remote Sensing/Photogrammetry; Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences; Atmospheric Sciences
ISSN
1385-2256
eISSN
1573-1618
D.O.I.
10.1007/s11119-012-9294-1
Publisher site
See Article on Publisher Site

Abstract

The area of sugar cane production in Brazil has substantially increased in the last few years due to the high demand for ethanol. It is estimated that the actual area, which is approximately 8 Mha, will increase to as much as 15 Mha in the next 10 years. In addition to enlarging the boundaries and installing new industrial units, sugar cane expansion demands better use of production areas and improvement of both yield and quality, combined with a reduction of production costs. Thus, models that can describe the behaviour of sugar cane quality parameters could be important in understanding the effects of soil and plant attributes on these parameters. The objective of this work was to fit mathematical models to the sugar cane Brix, pol and fibre parameters using physical soil attributes, chemical soil attributes and leaf nitrogen as predictors from the previous year. This work was carried out in an area of 10 ha located in Araras, SP, Brazil, from November 2008 until July 2011 in the first (plant cane), second (first ratoon) and third (second ratoon) cycles of the crop. The chemical soil attributes analysed were the macronutrients and micronutrients, and the soil physical attribute analysed was the soil texture. The variables used in the models were chosen using principal component analysis (PCA), and the fit of the models was made as the mean of multiple regressions. The results were compared using kriging to map the Brix, pol and fibre with the true and estimated values. The Brix, pol and fibre models presented R 2 values of 0.17, 0.06 and 0.18, respectively, for the first ratoon of the crop and 0.23, 0.19 and 0.52, respectively, for the second ratoon. These results allowed the estimation of Brix, pol and fibre with estimation errors less than 1 % for the first and second ratoons. The PCA approach identified soil organic matter, phosphorus and potassium as the soil attributes that had the higher variance of the dataset during the years studied.

Journal

Precision AgricultureSpringer Journals

Published: Dec 4, 2012

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off