Sodium Recirculation and Isotonic Transport in Toad Small Intestine

Sodium Recirculation and Isotonic Transport in Toad Small Intestine Isolated small intestine of toad (Bufo bufo) was mounted on glass tubes for perfusion studies with oxygenated amphibian Ringer's solution containing glucose and acetate. Under open-circuit conditions (V t =−3.9 ± 1.8 mV, N= 14) the preparation generated a net influx of 134Cs+. The time course of unidirectional 134Cs+-fluxes was mono-exponential with similar rate constants for influx and outflux when measured in the same preparation. The flux-ratio was time invariant from the beginning of appearance of the tracers to steady state was achieved. Thus, just a single pathway, the paracellular pathway, is available for transepithelial transport of Cs+. From the ratio of unidirectional Cs+-fluxes the paracellular force was calculated to be, 18.2 ± 1.5 mV (N= 6), which is directed against the small transepithelial potential difference. The paracellular netflux of cesium ions, therefore, is caused by solvent drag. The flux of 134Cs+ entering and trapped by the cells was of a magnitude similar to that passing the paracellular route. Therefore, independent of the convective flux of 134Cs+, every second 134Cs+ ion flowing into the lateral space was pumped into the cells rather than proceeding, via the low resistance pathway, to the serosal bath. It is thus indicated that the paracellular convective flow of 134Cs+ is driven by lateral Na+/K+-pumps. Transepithelial unidirectional 42K+ fluxes did not reach steady state within an observation period of 70 min, indicating that components of the fluxes in both directions pass the large cellular pool of potassium ions. The ratio of unidirectional 24Na+ fluxes was time-variant and declined from an initial value of 3.66 ± 0.34 to a significantly smaller steady-state value of 2.57 ± 0.26 (P < 0.001, N= 5 paired observations), indicating that sodium ions pass the epithelium both via the paracellular and the cellular pathway. Quantitatively, the larger ratio of paracellular Na+ fluxes, as compared to that of paracellular Cs+ fluxes, is compatible with convective flow of the two alkali metal ions through the same population of water-filled pores. With a new set of equations, the fraction of the sodium flux passing the basement membrane barrier of the lateral space that is recirculated through the cellular compartment is estimated. This fraction was, on average, 0.72 ± 0.03 (N= 5). It is concluded that isotonicity of the transportate can be maintained by producing a hypertonic fluid emerging from the lateral space combined with reuptake of salt via the cells. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Sodium Recirculation and Isotonic Transport in Toad Small Intestine

Loading next page...
 
/lp/springer_journal/sodium-recirculation-and-isotonic-transport-in-toad-small-intestine-H6MGcerdx8
Publisher
Springer Journals
Copyright
Copyright © Inc. by 1999 Springer-Verlag New York
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s002329900513
Publisher site
See Article on Publisher Site

Abstract

Isolated small intestine of toad (Bufo bufo) was mounted on glass tubes for perfusion studies with oxygenated amphibian Ringer's solution containing glucose and acetate. Under open-circuit conditions (V t =−3.9 ± 1.8 mV, N= 14) the preparation generated a net influx of 134Cs+. The time course of unidirectional 134Cs+-fluxes was mono-exponential with similar rate constants for influx and outflux when measured in the same preparation. The flux-ratio was time invariant from the beginning of appearance of the tracers to steady state was achieved. Thus, just a single pathway, the paracellular pathway, is available for transepithelial transport of Cs+. From the ratio of unidirectional Cs+-fluxes the paracellular force was calculated to be, 18.2 ± 1.5 mV (N= 6), which is directed against the small transepithelial potential difference. The paracellular netflux of cesium ions, therefore, is caused by solvent drag. The flux of 134Cs+ entering and trapped by the cells was of a magnitude similar to that passing the paracellular route. Therefore, independent of the convective flux of 134Cs+, every second 134Cs+ ion flowing into the lateral space was pumped into the cells rather than proceeding, via the low resistance pathway, to the serosal bath. It is thus indicated that the paracellular convective flow of 134Cs+ is driven by lateral Na+/K+-pumps. Transepithelial unidirectional 42K+ fluxes did not reach steady state within an observation period of 70 min, indicating that components of the fluxes in both directions pass the large cellular pool of potassium ions. The ratio of unidirectional 24Na+ fluxes was time-variant and declined from an initial value of 3.66 ± 0.34 to a significantly smaller steady-state value of 2.57 ± 0.26 (P < 0.001, N= 5 paired observations), indicating that sodium ions pass the epithelium both via the paracellular and the cellular pathway. Quantitatively, the larger ratio of paracellular Na+ fluxes, as compared to that of paracellular Cs+ fluxes, is compatible with convective flow of the two alkali metal ions through the same population of water-filled pores. With a new set of equations, the fraction of the sodium flux passing the basement membrane barrier of the lateral space that is recirculated through the cellular compartment is estimated. This fraction was, on average, 0.72 ± 0.03 (N= 5). It is concluded that isotonicity of the transportate can be maintained by producing a hypertonic fluid emerging from the lateral space combined with reuptake of salt via the cells.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Apr 1, 1999

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off